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The ability of biological systems to adapt to genetic and environ-
mental perturbations is a fundamental but poorly understood proc-
ess at the molecular level. By quantifying metabolic fluxes and glo-
bal mRNA abundance, we investigated the genetic and metabolic
mechanisms that underlie adaptive evolution of four metabolic
gene deletion mutants of Escherichia coli (�pgi, �ppc, �pta, and
�tpi) in parallel evolution experiments of each mutant. The initial
response to the gene deletions was flux rerouting through local
bypass reactions or normally latent pathways. The principal effect
of evolution was improved capacity of already active pathways,
whereas new flux distributions were not observed. Combinatorial
changes in capacity and pathway activation, however, led to differ-
ent intracellular flux states that enabled evolution in three of the
four parallel cases tested. The molecular bases of the evolved phe-
notypes were then elucidated by global mRNA transcript analyses.
Activation of latent pathways and flux changes in the tricarboxylic
acid cycle were found to correlate well with molecular changes at
the transcriptional level. Flux alterations in other central metabolic
pathways, in contrast, were apparently not connected to changes in
the transcriptional network. These results give new insight into the
dynamics of the evolutionary process by demonstrating the flexibil-
ity of the metabolic network of E. coli to compensate for genetic
perturbations and the utility of combining multiple high through-
put data sets to differentiate between causal and noncausal mecha-
nistic changes.

All biological systems are capable of short term response to environ-
mental changes and, on longer time scales, to evolutionary adaptation.
Due to the high growth rates and large numbers of individuals, adaptive
evolution of microbes under laboratory conditions rapidly leads to
improved growth phenotypes. This principle is exploited for evolution-
ary engineering (1, 2) and experimental testing of general evolutionary
principles (3–5). Combining experimental evolution with targeted
genetic perturbations then allows one to pose specific questions on
robustness and adaptability of biological networks. In response to such
externally introduced deletions, microorganisms can invoke a number
of different strategies to adjust their functionality. For metabolic net-

works, these strategies can involve a local bypass of the deleted reaction,
complete redirection of flux, reassignment of enzymes to catalyze the
deleted reaction, activation of silent genes, or activation of otherwise
down-regulated pathways. Whereas all of these mechanisms could
potentially cope with genetic perturbations, the exact mechanisms uti-
lized during evolution are poorly understood. Thus, a central question
in adaptation and evolution is to determinewhether evolving cells refine
their existing pathway usage or whether they invoke major metabolic
changes such as the activation of latent pathways.
The molecular basis of such evolutionary processes is now experi-

mentally traceable with the ability to rapidly improve microbial pheno-
types using laboratory evolution (from weeks to a few months) (6–8)
coupled with the principal accessibility of the underlying causes
through various “omics” methods or genome resequencing (9). As a
particularly popular tool, simultaneous transcript levelmonitoring of all
genes within the genome by DNA microarray technology was used to
identify altered gene expression in evolved Escherichia coli and Saccha-
romyces cerevisiae strains (4, 10, 11). Altered expression levels, however,
do not distinguish between cause and effect and thus cannot directly
reveal mechanistic links between altered expression and phenotype. In
particular, when considering evolution of metabolic functions, more
direct information on intracellular flux rerouting would be necessary to
reveal the molecular mechanisms that cause a given improved pheno-
type. Such in vivo reaction rates are accessible through methods of 13C-
based metabolic flux analysis (12), which have been used successfully to
identify functional flux states in various microbes (13–17). Potentially,
flux data can fill the gap between the intrinsically noisy and indirect
transcriptome, proteome, or metabolome data and the actual pheno-
type (18, 19). Thus, the combination of transcript profiles and quanti-
tative intracellular flux data can provide greater insight into biological
processes at themolecular level by implicating gene expression changes
to altered phenotypes through association with measured flux data.
Beyondmaximizing growth rates of wild-type strains on “exotic” sub-

strates through adaptive evolution (6, 7, 20, 21), rapid recovery of high
growth rates was demonstrated for metabolic gene deletion mutants of
E. coli (3). Replicates of evolved mutants exhibited phenotypic charac-
teristics that suggested the selection of different biochemical mecha-
nisms during parallel evolution under identical conditions. The molec-
ular bases, however, remained unknownbecausemultiple flux scenarios
could explain the improved growth phenotypes. Here we evolved four
E. coli knock-out mutants affected in metabolic key branch points,
phosphoglucose isomerase (pgi), phosphoenolpyruvate carboxylase
(ppc), phosphate transacetylase (pta), and triose-phosphate isomerase
(tpi), for several hundred generations under exponential growth condi-
tions on glucose. Since these lesions might be bypassed by at least two
different routes, we used metabolic flux and global gene expression
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analysis to identify the metabolic mechanisms responsible for the
improved phenotypes.

EXPERIMENTAL PROCEDURES

Strain Construction—The ppc and tpi mutants of MG1655 were
described previously (3), and the pgi and ptamutants were constructed
by in-frame gene deletions via homologous recombination facilitated by
the � red recombinase system (22) starting with the E. coli wild-type
MG1655 (ATCC, Manassas, VA). The plasmids pKD46, pKD13, and
pCP20 were used to introduce the recombinase gene, homologously
recombine with the target gene, and remove antibiotic resistancemark-
ers, respectively. Each knock-out was confirmed by PCR with genomic
DNA.

Adaptive Evolution—Evolution of constructed deletion mutants of
E. coli was conducted in 250 ml of M9 minimal medium supplemented
with 2 g/liter of glucose in 500-ml Erlenmeyer flasks usingmagnetic stir
bars for aeration at 37 °C. M9 medium contained (per liter of deionized
water) 0.8 g of NH4Cl, 0.5 g of NaCl, 7.5 g of Na2HPO4�2H2O, and 3.0 g
of KH2PO4. The following components were sterilized separately and
then added (per liter final volume of medium): 2 ml of 1 MMgSO4, 1 ml
of 0.1 M CaCl2, 0.3 ml of 1 mM filter-sterilized thiamine HCl, and 10 ml
of a trace element solution containing (per liter) 1 g of FeCl3�6H2O,
0.18 g of ZnSO4�7H2O, 0.12 g of CuCl2�2H2O, 0.12 g of MnSO4�H2O,
and 0.18 g of CoCl2�6H2O. At the start of evolution, initial precultures of
each mutant were grown overnight in LB medium before being trans-
ferred to minimal medium for adaptive evolution. Duplicate evolution
experiments were started from the same parental deletion mutant. In
evolution cultures, cells were grown overnight and allowed to reach
midexponential growth with an optical density at 600 nm (A600) below
0.5 before being diluted by passage into fresh medium. The dilution
factor at each passage was adjusted daily to account for changes in
growth rate. The optical density was typically at an A600 � 2.4 � 10�6.
This process of batch growth and serial passage was conducted for 30
days for the pta mutants (�800 generations), 45 days for the ppc
mutants (�750 generations), and 50 days for the pgi (�800 generations)
and tpi (�600 generations) mutants, where the ppc and tpi evolution
experiments were reported previously (3). This process of evolution
resulted in eight evolved mutants with end points designated as ptaE1,
ptaE2, ppcE1, ppcE2, pgiE1, pgiE2, tpiE1, and tpiE2. The number of
generations was estimated on a daily basis by calculating the starting
optical density of each batch culture and determining how many dou-
blings occurred during batch growth until being passed into fresh
medium. Cultures were evolved until a stable growth rate was achieved
formore than 5 days. This process of serial passagemaintained a state of
prolonged exponential growth so that no culture entered stationary
phase. Duplicate cultures were evolved concurrently under identical
conditions.

13C-Labeling Experiments—Frozen glycerol stock cultures were used
to inoculate LB complex medium. After 8 h of incubation at 37 °C and
constant shaking, LB precultures were used to inoculate M9 medium
precultures that were grown overnight for inoculation of cultures for
physiological or 13C-labeling experiments. Aerobic batch cultures con-
taining 30 ml of M9 medium were inoculated (1:100–1:200) in 500-ml
baffled shake flasks and incubated on a gyratory shaker at 250 rpm and
37 °C. For 13C-labeling experiments, glucose was added either entirely
as the 1-13C-labeled isotope isomer (�99%; Euriso-top, GIF-sur-Yvette,
France) or as a mixture of 20% (w/w) U-13C (�98%; Isotech, Miamis-
burg, OH) and 80% (w/w) natural glucose.
Cell growth was monitored by following the A600. Glucose and ace-

tate concentrations were determined enzymatically using commercial

kits (Beckman-Coulter (Zurich, Switzerland) or Dispolab (Dielsdorf,
Switzerland)). Other organic acids in culture supernatants were
detected by high pressure liquid chromatography analysis (PerkinElmer
Life Sciences) at a wavelength of 210 nm, using a Supelcogel C8 column
(4.6 � 250 mm) at 30 °C and a mobile phase of 2% (v/v) sulfuric acid at
a flow rate of 0.3 ml/min.
The following physiological parameters were determined during the

exponential growth phase as described previously (23): maximum
growth rate, biomass yield on glucose, specific glucose consumption
rate, and specific byproduct production rates, using a predetermined
correlation factor of 0.44 g of cellular dry weight per liter and A600 unit.

Metabolic Flux Ratio (METAFoR)3 Analysis by Gas Chromatogra-
phy-Mass Spectrometry—Samples for gas chromatography-mass spec-
trometry analysis were prepared as described previously (24). Briefly,
aliquots of 13C-labeled batch cultures were withdrawn during the
midexponential growth phase (A600 � 0.8–1.2). Cell pellets were hydro-
lyzed in 6 M HCl at 105 °C for 24 h in sealed microtubes. The hydroly-
sates were dried under a stream of air at around 60 °C and then derivat-
ized at 85 °C in 30�l of dimethylformamide (Fluka, Buchs, Switzerland)
and 30 �l of N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide
with 1% (v/v) tert-butyldimethylchlorosilane (Fluka) for 60 min (25).
Derivatized amino acids were analyzed on a series 8000 GC, combined
with anMD 800mass spectrometer (Fisons Instruments, Beverly, MA).
The gas chromatography-mass spectrometry-derived mass isotope dis-
tributions of proteinogenic amino acids were then corrected for natu-
rally occurring isotopes (24). The corrected mass distributions were
related to the in vivometabolic activities with previously described alge-
braic equations and statistical data treatment, which quantified 12
largely independent ratios of fluxes through converging reactions and
pathways to the synthesis of seven intracellular metabolites (24).
In [1-13C]glucose experiments with tpimutants, 13C label occurred in

position 3 of pyruvate, but no position 3 13C label occurred in the
upstream metabolites phosphoglycerate and phosphoenolpyruvate
(PEP). The normal flux ratio definition of METAFoR analysis (24)
would relate this label to the Entner-Doudoroff (ED) pathway. This
pathway, however, would introduce 13C label at the position 1 of pyru-
vate. The normally inactivemethylglyoxal bypass, which channels dihy-
doxyacetone phosphate (DHAP) molecules to pyruvate, in contrast,
would precisely introduce such 13C label at the position 3 of pyruvate
(26). To quantify the amount of pyruvate originating from DHAP
through the methylglyoxal bypass (pyruvate through methylglyoxal
bypass), we determined the mass isotopomer distribution vector
(MDV) of glycerol, which is identical to the MDV of DHAP1–3 (1–3
indicates that carbon atoms 1–3 of DHAP are considered). The base
fragmentm0 � 377, which corresponds to a derivatized glycerol mole-
cule (two tert-butyldimethylsilyl and one dimethylsilyl derivatization
chain) was used. To assess the relative contribution of methylglyoxal
bypass to pyruvate synthesis (f), the MDV of DHAP1–2, serine2–3, and
pyruvate2–3 are used as follows.

Pyruvate2–3 � f�DHAP1–2 � �1 – f ��serine2–3 (Eq. 1)

TheMDVofDHAP1–2 was notmeasured; however, the labeling enrich-
ment for this fragment will be similar to the one of DHAP1–3, since
position 1 of DHAP will be bearing the 13C-labeled atom. Hence, the
MDV of DHAP1–2 can be calculated, and Equation 1 can be used to
determine f. This approach neglects, however, the contribution of unla-

3 The abbreviations used are: METAFoR, metabolic flux ratio; PEP, phosphoenolpyruvate;
ED, Entner-Doudoroff; DHAP, dihydroxyacetone phosphate; MDV, mass distribution
vector; EMP, Embden-Meyerhof-Parnas; PP, pentose phosphate.
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beled two carbon molecules coming through the ED pathway. To take
the ED pathway contribution into account, we applied an iterative proc-
ess. The fraction of pyruvate molecules synthesized through the ED
pathway was calculated from the previously determined methylglyoxy-
late flux ratio and theMDV of pyruvate1–3, DHAP1–3, serine1–3, and the
MDV of a three-carbon unit with one labeled 13C atom as follows.

Pyruvate1–3 � f1�DHAP1–3

� f2�MDV (C3-molecule with one 13C atom)

� (1 � f1 � f2)�serine1–3 (Eq. 2)

where f1 represents the fraction of pyruvate molecules originating from
DHAP, f2 represents one-half of the fraction derived through the ED
pathway, and (1 � f1 � f2) represents the fraction derived through ser-
ine. Activity of the ED pathway introduces supplementary unlabeled
pyruvate2–3 molecules. To account for these, the MDV of serine2–3 in
Equation 1 was replaced by the MDV of a combination of unlabeled C2
molecules and serine2–3. The fraction of pyruvate2–3 molecules origi-
nating from DHAP1–2 was recalculated, and the whole process was
repeated iteratively until stable values for both of the fractions of
pyruvate2–3 molecules originating from DHAP1–2 and of pyruvate mol-
ecules derived through the ED pathway were obtained (around five
iterations). The S.E. values for these two determined flux ratios were
evaluated numerically. Indeed, since all individual components in the
mass distribution vectors have an S.D. value (24), normally distributed
random values for these individual components were chosen using the
MATLAB function normrnd (TheMathworks), with the constraint that
the sum of the elements of a mass distribution is equal to 1. These new
mass distribution vectors were used to determine the two ratios by
repeating the process 1000 times in a MATLAB-based program. The
mean values and the S.D. values for the two ratioswere determined from
these 1000 estimations. The mean values were within 1% of the calcu-
lated ratios, and the S.D. value was used as the error for the ratio.
Moreover, in the absence of triose phosphate isomerase in the tpi

mutants, the hypothesis used to calculate the flux ratios PEP through the
pentose phosphate (PP) pathway and serine through Embden-Meyer-
hof-Parnas (EMP) pathway is not valid anymore. Therefore, a
[1-13C]glucose experiment was used to determine the relative contribu-
tion of the EMP pathway to DHAP synthesis. In such a setup, all DHAP
molecules derived through the EMP pathway contain a 13C atom at
position 1, whereas the PP pathway will generate unlabeled DHAPmol-
ecules. Therefore, the relative contribution of the EMP pathway to
DHAP can be determined as follows.

DHAP1–3 � f�(MDV of C3 with one13C)

� (1 � f )�(MDV of labeled C3) (Eq. 3)

where f represents the contribution of the EMP pathway to DHAP syn-
thesis, and (1 � f) is the contribution of the oxidative branch of the PP
pathway to DHAP synthesis. The error on this ratio was determined
using error propagation (24).

13C-Constrained Net Flux Analysis—Intracellular net fluxes were
estimated with a stoichiometric model that contained all major path-
ways of central carbon metabolism (25). For the tpimutants, the previ-
ously described stoichiometric model was augmented with the methyl-
glyoxal bypass based on theMETAFoR results. The network considered
was similar to the one depicted in Fig. 1. For all mutant analyses, the
deleted reactions were kept in the network to obtain independent evi-

dence for their in vivo absence (or evidence for the takeover by another
gene). Only for the ppcmutants was the reaction from 2-oxoglutarate to
fumarate removed from the network, sinceMETAFoR analysis demon-
strated a complete absence of cyclic tricarboxylic acid cycle operation
(see Supplemental Table 1). The reaction matrix consisted, for the dif-
ferent strains, of 25–29 unknown fluxes and 21–24 metabolite balances
(including the three experimentally determined rates of glucose uptake,
acetate, and biomass production).
To solve this underdetermined system of equations with 4–5 degrees

of freedom, the following seven calculated flux ratios were used as addi-
tional constraints, as was described previously (25): serine derived
through the EMP pathway, pyruvate derived through the ED pathway,
oxaloacetate originating from PEP, PEP originating from oxaloacetate,
pyruvate originating from malate (upper and lower boundaries), and
PEP derived through the PP pathway (upper boundary). The first four
ratios were used as equality constraints, whereas the others were used
only as boundary constraints. When active, based on the METAFoR
data, the glyoxylate shunt was also considered in the network, and the
ratio oxaloacetate originating from glyoxylate was implemented as an
upper bound.4 The ratios DHAP derived through the EMP pathway and
pyruvate through the methylglyoxal bypass were used as equality con-
straints for the tpimutants, using the following equations: the fraction
of pyruvate derived through the methylglyoxal bypass.

a �
VDHAP3 PYR

VDHAP3 PYR � VPEP3 PYR � VMAL3 PYR � V6PG3 PYR
(Eq. 4)

and the fraction of DHAP derived through the EMP pathway.

b �
VF6P3 GAP-DHAP � VP5P�E4P3 F6P�GAP � VS7P�GAP3 E4P�F6P

VF6P3 GAP�DHAP

(Eq. 5)

Fluxes into biomass were calculated from the known metabolite
requirements formacromolecular compounds (28) and the growth rate-
dependent RNA and protein content (29). The sum of the weighed
square residuals of the constraints from both metabolite balances and
flux ratios was minimized using the MATLAB function fmincon. The
residuals were weighed by dividing through the experimental error (25).
The computation was repeated at least five times with randomly chosen
initial flux distributions to ensure identification of the global minimum,
and the system always converged to the same solution. An extended
version of the software FiatFlux was used to calculate all metabolic flux
ratios and net fluxes (30).

mRNA Transcriptional Profiling—Affymetrix (Santa Clara, CA)
E. coli antisense genome arrays were used for all transcriptional analy-
ses. Each experimental condition was tested in triplicate using inde-
pendent cultures and processed following the manufacturer’s recom-
mended protocols. Six replicates of the wild-type strain grown on
glucose were used for the reference point. Briefly, cultures were grown
tomidexponential growth phase (A600 	 0.5). 3 ml of culture was added
to 6 ml of RNAprotect (Qiagen, Valencia, CA), and RNA was isolated
using RNeasy kits (Qiagen, Valencia, CA) following the manufacturer’s
instructions. Total RNA yields were measured using a spectrophotom-
eter (A260), and quality was checked by visualization on agarose gels and
by measuring the sample A260/A280 ratio. cDNA synthesis, fragmenta-
tion, and terminal labeling were conducted as recommended by

4 A. Perrenoud, A. Schicker, and U. Sauer, submitted for publication.
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Affymetrix. Raw .CEL files were analyzed using robust multiarray aver-
age (31) for normalization and calculation of probe intensities.
Expression values were then assessed for statistically significant dif-

ferential expression using t tests. After conducting pairwise t test com-
parisons between evolvedmutants and wild type, those genes meeting a
5% false discovery rate-adjusted p value cut-off were chosen as having
statistically significant changes in gene expression. This resulted in
selection of subsets of differentially expressed genes for each tested
evolution mutant.
These subsets of differentially expressed genes were then organized

into known regulon structures (32) for further analysis. The probability
(p value) of the observed regulon enrichment of differentially expressed
genes was calculated using the hypergeometric distribution (33),

p � 1 � �
i � 0

y�1 �r

y��N � r

n � y�
�N

n�
(Eq. 6)

where N (equal to 4345) represents the total number of E. coli genes
listed on the Affymetrix GeneChip, r is the total number of genes that
are a part of the regulon, n is the number of differentially expressed

genes, and y is the number of genes that are differentially expressed and
a member of the regulon.

In Vitro Enzyme Activity—Crude cell extracts for in vitro enzyme
assays were prepared from pellets of 45-ml culture aliquots. Pellets were
resuspended in 4ml of 0.9% (w/v)NaCl and 10mMMgSO4, passed three
times through a French pressure cell (1.2� 108 pascals), and centrifuged
at 11,000 � g. In vitro activity of the methylglyoxal bypass was deter-
mined by enzyme assays for methylglyoxal reductase and two coupled
enzyme assays for methylglyoxal synthase-methylgloxal reductase and
methylglyoxal synthase-glyoxalase. For methylglyoxal reductase, the
assay of Saikusa et al. (34) was adapted: 50 mM Tris-HCl (pH 7.5), 0.125
mMNADPH, 10 mMmethylglyoxal, and 100 �l of crude cell extract per
ml of assay. The assay for methylglyoxal synthase-methylglyoxal reduc-
tase was similar to the previous one, with the sole difference being the
use of 0.75 mM DHAP instead of methylglyoxal. For methylglyoxal syn-
thase-glyoxalase, the assay of Hoper and Cooper (35) was adapted: 40
mM imidazole (pH 7.0), 1.65 mM glutathione (pH 7.0), 0.75 mM DHAP,
and 100 �l of crude cell extract per ml of assay. For all three assays, the
reaction was initiated by the addition of either methylglyoxal or DHAP
and consumption of NADPH (at 340 nm), and formation of S-lactoyl-
glutathione (240 nm) was detected in the two first and second assays,
respectively. The extinction coefficients for NADPH and S-lactoylglu-
tathionewere 6.2 and 3.4mM�1 cm�1, respectively. The protein content
in crude cell extracts was determined with the biuret reaction.

RESULTS

Physiological Characterization of Evolved Knock-out Mutants—To
identify the metabolic routes chosen by adaptive evolution to cope with
a gene knock-out, we selected four gene knock-outs that severely affect
the flux distribution at key branch points of glucose catabolism: pgi, ppc,
pta, and tpi (Fig. 1). Two parallel cultures of each mutant were evolved
for 30–50 days (600–800 generations), under conditions of exponential
batch growth in M9 minimal medium with 2 g/liter glucose. The end
points of evolution were defined as having unaltered physiology for
�100 generations, and these mutant populations were designated as
ptaE1, ptaE2, ppcE1, ppcE2, pgiE1, pgiE2, tpiE1, and tpiE2. Akin to the
previously reported ppc and tpi evolution experiments (3), the pgi and
pta mutants rapidly evolved improved phenotypes (Table 1). Most
knock-outmutations severely reduced the specific growthandglucosecon-
sumption rates, but all evolvedmutants largely recovered thewild type-like
rates at the end point of evolution. Whereas all mutants evolved to
improved phenotypes, some parallel evolved cultures displayed different
phenotypes; e.g. the evolved pgi mutants pgiE1 and pgiE2 exhibited very
different overflowmetabolism and biomass yield, and the ptaE1 and ptaE2

TABLE 1
Aerobic growth parameters of parent mutant, evolved mutants, and wild type during exponential growth on glucose
The two parallel evolved mutants are denoted by the additions E1 and E2.

Strain Day of evolution Growth rate Biomass
yield

Glucose
consumption rate

Acetate
production rate

Pyruvate
production rate

h�1 g�g�1 mmol g�1 h�1 mmol g�1 h�1 mmol g�1 h�1

Wild type 0 0.63 
 0.03a 0.40 
 0.02 8.8 
 0.5 4.5 
 0.7 0.0 
 0.0
pgi 0 0.17 
 0.00 0.41 
 0.02 2.3 
 0.1 0.1 
 0.1 0.0 
 0.0
pgiE1 50 0.34 
 0.06 0.32 
 0.07 5.8 
 0.3 2.6 
 0.5 0.0 
 0.0
pgiE2 50 0.53 
 0.03 0.53 
 0.02 5.6 
 0.5 0.0 
 0.0 0.0 
 0.0
ppc 0 0.22 
 0.01 0.40 
 0.01 3.0 
 0.0 1.1 
 0.0 0.0 
 0.0
ppcE1 45 0.55 
 0.04 0.37 
 0.02 8.1 
 0.1 2.2 
 0.3 0.0 
 0.0
ppcE2 45 0.56 
 0.01 0.39 
 0.01 7.8 
 0.3 2.2 
 0.2 0.0 
 0.0
pta 0 0.58 
 0.02 0.36 
 0.02 9.1 
 0.9 0.6 
 0.2 4.3 
 2.1
ptaE1 30 0.64 
 0.04 0.34 
 0.01 10.3 
 0.6 0.7 
 0.3 4.6 
 2.2
ptaE2 30 0.66 
 0.00 0.43 
 0.02 8.6 
 0.5 0.7 
 0.2 2.8 
 2.5
tpi 0 0.18 
 0.02 0.33 
 0.02 2.7 
 0.0 0.2 
 0.1 0.0 
 0.0
tpiE1 50 0.51 
 0.02 0.36 
 0.01 7.8 
 0.8 1.0 
 1.0 0.0 
 0.0
tpiE2 50 0.49 
 0.02 0.37 
 0.02 7.3 
 0.3 0.9 
 0.9 0.0 
 0.0

a Average 
 S.D. for 3–7 independent experiments.

FIGURE 1. Bioreaction network of E. coli central carbon metabolism. The arrows indi-
cate the assumed reaction reversibility. Inactivated genes in the investigated knock-out
mutants are highlighted in boxes.
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mutants differed significantly in their glucose uptake rates (Table 1). Thus,
the evolutionary end points are convergent and reproducible with
respected to themainselectivepressure forhighgrowthrate,but theunder-
lying physiological states are not necessarily the same.

Metabolic Flux Analysis—Which are the actual metabolic mecha-
nisms chosen by adaptive evolution, and do all mutants evolved in par-
allel rely on the same mechanisms to cope with a given lesion? To
answer these questions, intracellular fluxes were quantified from 13C-
labeling experiments (25).

As expected (24, 36, 37), glucose catabolism in the unevolved pgi
mutant is rerouted from the EMP to the PP and ED pathways to bypass
the lesion (Fig. 2A). Furthermore, operation of the otherwise inactive
glyoxylate shunt in the unevolved pgimutant was consistent with earlier
reports (37, 38). Whereas the severely altered flux distribution was
maintained, evolution more than doubled the absolute flux level to
about 65% of the wild-type glucose uptake rate (Table 1). In contrast to
the unevolved pgi mutant, initial glucose catabolism proceeded almost
exclusively through the PP pathway in both evolved mutants (Fig. 2A).

FIGURE 2. The unevolved mutant (top entry in boxes), the two evolved mutants (second and third entries in boxes), and wild-type E. coli (bottom entry) are given for the pgi
(A), ppc (B), pta (C), and tpi (D) mutants. Flux values are normalized to the specific glucose uptake rate given in the first box, and only selected fluxes are given for clarity. Fluxes were
determined by 13C-constrained flux analysis from two separate experiments with 100% [1-13C]glucose and with a mixture of 20% [U-13C] and 80% unlabeled glucose along with the
physiological data of Table 1 (25). Physiological data were allowed to vary within the confidence intervals given in Table 1. Reactions encoded by deleted genes are highlighted in gray
and were not removed from the flux model. Reactions not considered in the network because of independent 13C flux ratio evidence for their absence are represented by a minus sign.
Relative to the glucose uptake rate, confidence intervals were between 10 and 40% for the transhydrogenase flux, below 20% for the tricarboxylic acid cycle, and less than 10% for
all other fluxes. A complete list of determined absolute fluxes is shown in Supplemental Table 3.
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In the lower part of metabolism, however, the two evolved network
topologies differed significantly. Whereas the pgiE2 mutant flux distri-
bution was similar to the unevolved mutant with an active glyoxylate
shunt and no acetate secretion, the pgiE1 mutant was more similar to
the wild type with acetate secretion and full tricarboxylic acid cycle flux
instead of the glyoxylate shunt flux. Thus, the pgi mutants evolved to
improved phenotypes through rather different intracellular flux scenar-
ios. Unexpectedly, these flux adaptations occurred far away from the
deleted gene, possibly suggesting the need for downstream metabolic
adjustment in relation to the initially implemented flux distribution.
Knock-out of phosphoglucose isomerase forced glucose catabolism pri-
marily through the NADPH-producing PP pathway, resulting in
NADPH production encompassing the biosynthetic needs of the cells
(36). Hence, in contrast to the wild type, where the membrane-bound
transhydrogenase PntAB converts NADH to NADPH to meet the
NADPH requirements of the cells, in the pgimutants, the soluble tran-
shydrogenase converts the excess NADPH to NADH (Fig. 2A).

Generally, PEP carboxylase inactivation precludes growth on glucose
as the sole carbon source, because this anaplerotic reaction replenishes
tricarboxylic acid cycle intermediates that are withdrawn for biosynthe-
sis (39). Physiological suppressor mutants occur rapidly, however, and
the slow glucose growth phenotype of the unevolved, suppressed ppc
mutant was almost fully recovered through adaptive evolution with
indistinguishable physiology in the two evolvedmutants (Table 1). In all
ppcmutants, the normally glucose-repressed glyoxylate shunt replaced
the anaplerotic function of PEP carboxylase (Fig. 2B), as was described
previously (40). The flux through the shunt, however, was in 40% excess
of the anabolic demand for the biomass precursors oxaloacetate and
2-oxoglutarate. In the unevolved and the ppcE1mutants, this excess flux
was catabolized through the PEP-glyoxylate cycle with the glyoxylate
shunt and PEP carboxykinase as key reactions (38). Additionally, malic
enzyme contributed to this cycle in all three ppcmutants by converting
malate to pyruvate. Thus, the latent glyoxylate shunt functionally
replaced the ppcmutation and was immediately invoked upon deletion
of ppc. Evolution of the ppc mutants led to subtle differences in the
metabolic network topology by using either PEP carboxykinase ormalic
enzyme as was necessary to balance the excess precursors being gener-
ated through the active glyoxylate shunt.
Blocking the main acetate secretion route in pta mutants was coun-

teracted by secreting pyruvate instead of acetate (Table 1). As had been
observed for different pta mutants, small amounts of acetate were still
produced (41). Since the phenotype of the unevolved mutant was oth-
erwise similar to thewild type, growth physiology and network topology
were largely unaltered in the evolved mutants (Fig. 2C and Table 1).
Nevertheless, the end point flux states were detectably different in the
two evolved pta mutants with significantly lower absolute fluxes and
lower pyruvate secretion in the ptaE2mutant. The increased tricarbox-
ylic acid cycle and EMP pathway expressions, which had been observed
for a double pta-ackA knock-out mutant (42), were not reflected in the
flux states of the ptamutants.

Knock-out of the triose-phosphate isomerase in the tpi mutant
affects a stoichiometrically equal splitting of the glycolytic flux into gly-
eraldehyde phosphate and DHAP. To prevent internal accumulation of
DHAP, tpi mutants convert DHAP to pyruvate through the normally
inactive methylglyoxal bypass (26, 43) (Fig. 2D). Since the present 13C
data provide only indirect evidence for methylglyoxal bypass fluxes, its
activation was confirmed through in vitro enzyme data. Compared with
the wild type, the unevolved tpimutant exhibits about 2.5-fold higher in
vitro activities in the glyoxalase I branch of the methylglyoxal bypass
(Table 2). Evolution more than doubled the overall flux level to about
80% of the wild-type glucose uptake rate (Table 1). This is probably a
direct consequence of improved methylglyoxal bypass fluxes through
the glyoxalase I branch with about 4-fold increased in vitro activities
(Table 2), indicating that the glutathione intermediate branch is more
suitable for higher fluxes through themethylglyoxal bypass than the two
consecutive oxidation-reduction reactions in the methylglyoxal reduc-
tase branch. Thus, the normally latent methylglyoxal bypass function-
ally replaced the introduced tpimutation.Whereas the unevolved strain
exhibited slow growth, evolution led to greatly improved growth
through implementation of metabolic adjustments (methylglyoxal
bypass) downstream of the introduced lesion needed to accommodate
different metabolite pools present due to the absence of triose-phos-
phate isomerase, which resulted in almost tripled absolute fluxes.

mRNA Transcriptional Profiling—Whereas the flux data identified
metabolic mechanisms that cope with lesions and the changes brought
about by evolution, they cannot reveal the actual genetic basis. In an
attempt to elucidate the molecular mechanisms responsible for the
observed changes in network topology during evolution, we generated
differential genome-wide transcription profiles of the evolved pgi, ppc,
and tpi mutants that exhibited major flux differences. All results and
analyses were restricted to statistically significant expression changes
(as determined by p value cut-offs selected for a false discovery rate of
5%). Comparing the wild type with the evolved populations, 1205 dif-
ferentially expressed genes were identified. All significant changes in
gene expression were qualitatively correlated with the flux changes
through the encoded reaction by relative comparison of evolved expres-
sion levels and flux changes against the wild-type base-line
measurements.
In the pgiE1 and pgiE2 mutants, 19 fluxes representing 35 genes and

26 fluxes representing 53 genes, respectively, changed significantly
when compared with the wild type. A qualitative agreement between
flux and expression changes occurred in 7 (of 35) and 35 (of 53) of these
genes for mutants pgiE1 and pgiE2, respectively (Fig. 3A and Supple-
mental Table 2). Besides the expected decrease in expression of pgi,
expression of the glycolytic genes pfkA and gapA was consistently
reduced and correlated with the lower glycolytic flux in both mutants.
Consistent with the differences in phenotype and flux profiles, a large
number of expression differences were found between the twomutants
in the lower portion of central metabolism. In particular, decreased
expression of the tricarboxylic acid cycle genes icdA, sucABCD, and

TABLE 2
In vitro enzyme activities in crude cell extracts of tpi mutants and wild type

Specific activities
Methylglyoxal

reductase
Methylglyoxal synthase and
methylglyoxal reductase

Methylglyoxal synthase
and glyoxalase I

�mol substrate min�1 g protein�1

tpimutant 53.5 
 0.3a 2.8 
 1.6 42 
 8
tpiE1 mutant 24.1 
 2.5 0.5 
 0.2 137 
 10
tpiE2 mutant 33.2 
 2.3 0.7 
 0.7 194 
 8
MG1655 22.5 
 0.1 1.0 
 0.3 16 
 4

a Average and deviation from triplicate experiments.
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sdhABCD and, less pronounced, of all glycolytic enzymes in pgiE2 was
consistent with the flux data. Moreover, increased expression of the
glyoxylate shunt gene glcB correlated with the activated shunt in this
pgiE2mutant, and no significant difference in expressionwas seen in the
pgiE1 mutant with an inactive shunt. Thus, there is a genetic basis for
the much lower tricarboxylic acid cycle and much higher glyoxylate
shunt in the pgiE2 mutant and the absence of significant changes in the
pgiE1 mutant. E. coli has two transhydrogenases, a soluble and a mem-
brane-bound, which are used to balance the NADPH and NADH pools
(44–46). The soluble transhydrogenase, encoded by udhA, converts
NADPH to NADH, whereas the membrane-bound transhydrogenase,
encoded by pntAB, converts NADH to NADPH and accounts, in batch
cultures of the wild type, for around 40% of the required NADPH pro-
duction (36). Expression changes for the two transhydrogenases mostly
correlated with the flux distribution for both evolved mutants. Indeed,
the expression of the membrane-bound transhydrogenase showed a
statistically significant decrease in expression, since NADPH was pro-
duced in excess to the biosynthetic requirements, whereas the expres-
sion of the soluble transhydrogenase increased, but surprisingly was
significant only for pgiE2 that had the lower NADPH to NADH conver-
sion (Fig. 2A).
In both evolved ppcmutants, altered expression of 14 genes was qual-

itatively correlated with flux changes (Fig. 3B and Supplemental Table
2). Common to bothmutants was altered expression in the lower part of
central metabolism with decreased expression of ackA and the tricar-
boxylic acid cycle genes sucABC and sdhABCD and increased expres-
sion of fumB and the glyoxylate shunt gene aceA. Thus, decreased ace-

tate secretion, activation of the glyoxylate shunt, and decreased
tricarboxylic acid cycle fluxes were probably directly determined
through altered expression of key genes in these pathways.
In the tpiE1 and tpiE2 mutants, 15 fluxes representing 42 genes and

16 fluxes representing 43 genes, respectively, changed significantly
when compared with the wild-type. Qualitative correlation between
expression and flux changes, however, was observed for only two genes
(one of whichwas decreased expression of tpi) in tpiE1 and four genes in
tpiE2 (Fig. 3C and Supplemental Table 2). Notably, the major flux
change in the mutants compared with the wild-type, activation of the
normally latent methylglyoxyal bypass, was probably genetically deter-
mined, because both mutants increased expression of gloA (�2-fold).
This view is further supported by the about 10-fold higher in vitro activ-
ity of the gloA-encoded glyoxylase I (Table 2). The decreased glycolytic
and increased tricarboxylic acid fluxes were not reflected by changes in
gene expression.
Since higher glyoxylate shunt fluxes appeared to have a genetic basis,

we were interested to see whether this was due to a particular mecha-
nistic change affecting only the shunt genes or if other expression
changes were correlated in individual genes or in a regulatory cascade.
Hence, we searched for genes with statistically significant expression
changes in the same direction in the pgiE2, ppcE1, and ppcE2 mutants
with an active glyoxylate shunt. Expression of 38 genes was increased,
and expression of 132 genes was decreased exclusively in the pgiE2,
ppcE1, and ppcE2 mutants but not in the other three mutants investi-
gated. Mostly, these genes were involved in metabolic pathways that
branch off from the tricarboxylic acid cycle, including increased expres-

FIGURE 3. Gene expression changes associated with measured changes in metabolic fluxes. Genes showing statistically significant changes in gene expression that correlate to
measured changes in metabolic fluxes are shown with values shown as log2 ratio compared with the wild type for the pgi (A), ppc (B), and tpi mutants (C). Evolved mutants are
indicated at the top of each column, and gene names are shown in rows. Cases where no statistical change was measured are indicated as no change (NC).
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sion of tRNAs associated with glutamine (glnX), asparagine
(asnTUVW), and methionine (metVWYZ) and decreased expression in
some of the biosynthetic pathways for aspartate (ansA) andmethionine
(metABCE). In addition, redoxmetabolismwas affected in the activated
glyoxylate shunt mutants with increased expression of the hyaA, torA,
torC, torY, and torZ genes that are involved in quinone biosynthesis
from the tricarboxylic acid cycle intermediate �-ketoglutarate. This
coordinated pattern of expression changes may indicate one or more
mutations in the transcriptional network that controls expression of the
glyoxylate shunt and many other genes. Whereas the active glyoxylate
shunt was clearly relevant for the observed phenotypes, it remains
unclear whether the related changes contribute to the mutant
phenotypes.
Changes in transcriptional regulatory units were further investigated

by using significant expression changes in each strain to calculate the
probability that a statistical change has occurred in a regulon. p values
for each evolved mutant were calculated for 124 regulons using the
hypergeometric distribution at a p value cut-off of 5%. Screening for
regulatory changes that could correspond to physiological changes, we
found that both evolved pgimutants exhibited consistent down-regula-
tion of the LeuO regulon (associated with leucine biosynthesis) and that
all three mutants utilizing the glyoxylate shunt (pgiE2, ppcE1, and
ppcE2) down-regulated the MetJ regulon (associated with methionine
biosynthesis) (Table 3). Whereas production of the amino acids leucine
and methionine is essential, it appears that a change in the regulatory
network was induced to balance the amino acid with other biological
demands. In the case of the pgimutants, lower availability of pyruvate (a
precursor to leucine) could force a reduction in leucine production to

allow pyruvate to fulfill other metabolic needs. In the case of mutants
utilizing the glyoxylate shunt, activation of the PEP(pyruvate)-glyoxy-
late cycle (38) was found, which involves oxaloacetate (a precursor to
methionine) and thus could limit the production of methionine. Thus,
in two cases, adaptive mechanisms occurred in the transcriptional reg-
ulatory network that are closely connected to the observed changes in
the metabolic network.

DISCUSSION

Several strategies can be invoked in response to externally introduced
genetic perturbations that confer genetic robustness to the network.
The initial response to the four investigated deletionswas a local rerout-
ing of fluxes around the lesion, which involved activation of latent path-
ways in several mutants. Although cultures were followed for several
hundred generations, there was not a single case where evolution
invented a new solution (e.g. activation of a silent gene or reassignment
of enzyme function). Instead, the primary effect of evolution over the
observed time frame was an increase in the capacity of already active
pathways. As a consequence, the overall fluxes increased in those
mutants that were severely affected by the mutation (pgi, ppc, and tpi
mutants). In several cases, the first metabolic response in the unevolved
mutants, which involved the activation of pathways that are usually
inactive or almost inactive, such as the glyoxylate shunt or the ED path-
way, was even lost during adaptive evolution. Examples are the loss of
glyoxylate shunt activity in pgiE1 and the two evolved tpi mutants and
the loss of local flux rerouting through the EDpathway in the evolved pgi
mutants. Hence, the immediate strategy invoked by E. coli in response
to an externally introduced genetic perturbation is not always optimal.

TABLE 3
Regulon changes in the MetJ and LeuO regulons
p values calculated using the hypergeometric distribution indicate significance of expression changes within each regulon. Themean fluorescence intensity of the wild-type
expression level is given as the Log2 value. Expression changes for each gene within the regulon are given as Log2 ratios. Shaded boxes showed statistical change (p value �
0.05) in the regulon.
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However, no single optimum exists, as demonstrated by the parallel
evolved pgimutants that differ in anaplerotic reactions and tricarboxylic
acid cycle fluxes.
Whereas there are a number of ways for an organism to compensate

for a gene deletion, one hypothesis is that an introduced genetic pertur-
bation should force a redistribution of fluxes through the network as an
immediate rescue solution, and evolution would then entail a process of
refining this newly established initial state (47). Generally, our results
fully support this hypothesis, but we were surprised to find relatively
large variations in the flux states of parallel evolved mutants. This
appears to reflect the robustness of themetabolic network and its ability
to utilize different means to not only survive but to improve growth
characteristics. These results provide experimental support to compu-
tational results stating that bacterial metabolic networks have many
different means of achieving similar, equivalent functionality (alternate
optimal solutions) (48). It is likely that biological noise and stochastic
variations play some role in the development of these diverse flux states,
but it is presently unclear how these properties are integrated into evo-
lutionary dynamics, and selection is not clearly defined.
The distribution of molecular fluxes is regulated by multiple mecha-

nisms at several levels that include gene expression, posttranscriptional
control, enzyme kinetics, and allosteric control. To determine whether
transcriptional modifications were the cause of the altered flux distri-
butions, gene expression levels were systematically compared with flux
levels. A particularly high correlation was found for the complete acti-
vation or inactivation of latent pathways, such as the glyoxylate shunt
and the methylglyoxal bypass. In those cases, expression of at least one
gene correlated qualitatively with the flux changes through these path-
ways. Moreover, flux changes in the tricarboxylic acid cycle also corre-
latedmostlywith altered gene expression, e.g. the reduced fluxes in parts
of the tricarboxylic acid cycle for pgiE2 and both evolved ppc mutants.
The lack of correlation in the tpi mutants might be related to the less
pronounced changes in absolute tricarboxylic acid cycle fluxes than for
the other three mutants, whose succinyl-CoA synthetase and succinate
dehydrogenase fluxes were essentially zero (Fig. 2 and Supplemental
Table 3). No flux-expression correlation was found for the three path-
ways of initial glucose catabolism, not even in the pgi mutants with
greatly increased PP pathway fluxes. Solely pfkA and gapA expression
correlated with the reduced EMP pathway flux in both pgi evolved
mutants. Hence, glyoxylate shunt, methylglyoxal bypass, and tricarbox-
ylic acid cycle flux changes appear to be controlled, at least in part, at the
transcriptional level. Flux through the PP and EMP pathways and PEP
carboxylase, in contrast, were not controlled at the transcription level.
Similarly, a strong qualitative correspondence between gene expres-

sion and metabolic fluxes for the glyoxylate shunt had previously been
observed in S. cerevisiae, whereas tricarboxylic acid cycle and PP path-
way fluxes only partially correlated (49). Comparison of flux and gene
expression for E. coli grown under anaerobic conditions on xylose and
glucose showed a similar absence of correlation for the PP pathway;
however, in contrast to our results, the EMP pathway showed a strong
flux-gene expression correlation (27). The absence of correlation in our
data might be related to the relatively small changes in absolute EMP
pathway fluxes. Hence, gene expression changes are not always mani-
fested in the expressed phenotype, since attributes such as translational
efficiency, allosteric control, or changes in enzyme kinetics will not be
reflected in individual mRNA transcript levels. Thus, the combined
analysis of gene expression data with flux data is onemeans of pinpoint-
ing mRNA transcript and regulatory changes that may be causal to
observed phenotypes. In the case of this study, interpreting the gene
expression data in the context of fluxmeasurements allowed us to focus

on a small number of meaningful expression changes out of the thou-
sands of observed expression changes.
Generally, E. coli is able to rapidly recover to nearly wild-type growth

from a severely crippled phenotype resulting from initial genetic pertur-
bations by utilization of existing (though sometimes dormant) pathways
parallel to the lesion. This conclusion can probably be extrapolated to
mutations in the centralmetabolismofmany organisms that, likeE. coli,
feature a highly interconnected network of core reactions butmay differ
for organismswith simplermetabolism and formutations in less redun-
dant parts of the network (e.g. biosynthetic routes to essential com-
pounds). Metabolic capacity of the activated parallel pathways appears
to be analogous to the pathways used in the wild type; however, down-
stream metabolic adjustments are often needed to refine usage of the
new pathways. These adjustments could be implemented to alleviate
intracellular metabolite pools resulting from new pathway usage (pgi,
ppc, and tpimutants). It was even observed that strains evolved in par-
allel frequently utilized different means of achieving this refinement,
sometimes leading to surprisingly large differences in flux states
(pgiE1 and pgiE2). Overall, we have found that the metabolic net-
work of E. coli is robust in response to a genetic perturbation, with
metabolic adjustments occurring in two phases: an initial flux
rerouting to compensate for the lesion and a subsequent down-
stream adjustment to optimize flux rerouting. Combined analysis of
multiple data types was pivotal to unravel mechanistic details of
these downstream adjustments.
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