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Abstract

Shewanella oneidensis MR-1 sequentially utilizes lactate and its waste products (pyruvate and acetate) during batch culture.
To decipher MR-1 metabolism, we integrated genome-scale flux balance analysis (FBA) into a multiple-substrate Monod
model to perform the dynamic flux balance analysis (dFBA). The dFBA employed a static optimization approach (SOA) by
dividing the batch time into small intervals (i.e., ,400 mini-FBAs), then the Monod model provided time-dependent inflow/
outflow fluxes to constrain the mini-FBAs to profile the pseudo-steady-state fluxes in each time interval. The mini-FBAs used
a dual-objective function (a weighted combination of ‘‘maximizing growth rate’’ and ‘‘minimizing overall flux’’) to capture
trade-offs between optimal growth and minimal enzyme usage. By fitting the experimental data, a bi-level optimization of
dFBA revealed that the optimal weight in the dual-objective function was time-dependent: the objective function was
constant in the early growth stage, while the functional weight of minimal enzyme usage increased significantly when
lactate became scarce. The dFBA profiled biologically meaningful dynamic MR-1 metabolisms: 1. the oxidative TCA cycle
fluxes increased initially and then decreased in the late growth stage; 2. fluxes in the pentose phosphate pathway and
gluconeogenesis were stable in the exponential growth period; and 3. the glyoxylate shunt was up-regulated when acetate
became the main carbon source for MR-1 growth.
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Introduction

Cell metabolisms are highly dependent on environmental

conditions, so the metabolic state often shifts during the cultivation

period [1,2,3]. Characterizing the transience of metabolic fluxes is

important for understanding how cells responded to environmen-

tal changes. Bioprocess models (e.g., a Monod-based kinetic

model) [4] have been widely applied to predict microbial

dynamics, but they cannot directly obtain the intracellular flux

distributions. On the other hand, flux balance analysis (FBA)

profiles the rates of enzymatic reactions based on stoichiometric

mass balance, knowledge of reaction constraints, and measure-

ments of inflow/outflow fluxes [5,6]. As an underdetermined

model, FBA requires an objective function (e.g., ‘‘maximizing

growth rate’’) for flux calculation. However, since cells may show

suboptimal metabolism and reprogram their metabolic fluxes

under different environmental conditions, the commonly used

objective function is insufficient to describe cell physiologies

[7,8,9]. Furthermore, FBA assumes steady-state metabolic condi-

tions, and thus is unable to directly analyze the transience of cell

metabolism [10,11,12].

This study developed an FBA framework that integrates Monod

kinetics and FBA to decipher the dynamic metabolism of MR-1

(Figure 1). MR-1 is a facultative anaerobic bacterium, which not

only plays an important ecological role in carbon cycling and

metal reduction, but also has been widely used for in situ

bioremediation and microbial fuel cell applications [13,14,15].

MR-1 has a diverse carbon utilization capability and shifts its

metabolism during batch cultivation [16]. MR-1 uses lactate for

initial growth and produces acetate and pyruvate. In the late

growth stage, MR-1 metabolizes less energy-favorable pyruvate

and acetate. To describe such kinetic behavior, we used

unsegregated Monod equations to simulate cell growth, lactate

utilization, and metabolite secretion and reuse. The standard

Monod model was incorporated into a genome-scale FBA model,

iSO783 [17], to formulate the dynamic FBA (dFBA) framework

[11], which enabled quantitative predictions of the MR-1

metabolism.

Results

Monod model
MR-1 growth displayed an apparent lag phase (,7.1 h) in

30 mM lactate medium (0.1% inoculation). By incorporating a

time delay function for the lag growth phase, a standard Monod

model consisting of four ordinary differential equations was built

to describe the extracellular metabolite curves and growth kinetics

(Figure 2). The parameters of the Monod model were estimated by

fitting the experimental data. Table 1 indicates that the lactate-

based biomass yield was higher than that for either pyruvate or
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acetate, confirming the preferential utilization of lactate as an

energy-favorable carbon substrate for MR-1. Similarly, the lactate-

based growth rate (mmax) was much higher than that for either

pyruvate or acetate, indicating that lactate was the major carbon

substrate for biomass growth at the early growth stage. Table 1

lists the rate coefficients (kpl, kap and kal) for waste products

(pyruvate and acetate) synthesis and reuse, which indicates that

MR-1 quickly consumed lactate, producing significant metabolic

overflows to the waste products. Such a strategy illustrates an

advantageous ecological niche for MR-1 in competing for

favorable carbon sources. Finally, although our standard Monod

model reasonably well described MR-1 growth data, its results

showed some lack-of-fit with statistical analysis (Table S1). Such a

discrepancy was possibly due to the model’s simplification and to

measurement noises. In this study, the kinetic model represents a

compromise between complexity and practical simplicity.

Link kinetic model to FBA
To resolve the flux dynamics, the static optimization approach

(SOA) divided the cultivation phase into numerous pseudo-steady

states so that a conventional genome-scale MR-1 framework

(iSO783, containing 774 reactions and 634 metabolites) was able

to calculate the flux distributions [17] in each five-minute time

interval. Such dFBA model consisted of ,400 mini-FBAs. To

avoid repeated and tedious measurements of biomass and

metabolite concentrations for each mini-FBA, we used the Monod

model to determine the inflow/outflow fluxes of lactate, acetate,

and pyruvate in each time interval. The mini-FBAs could be

resolved by an objective function of ‘‘maximizing growth rate’’,

but this function severely overestimated the actual biomass growth

Figure 1. Flowchart of dFBA to decipher the dynamic metabolism of S. oneidensis MR-1.
doi:10.1371/journal.pcbi.1002376.g001

Author Summary

This study integrates two modeling approaches, a Monod
kinetic model and genome-scale flux balance analysis, to
analyze the dynamic metabolism of an environmentally
important bacterium (S. oneidensis MR-1). The modeling
results reveal that MR-1 metabolism is suboptimal for
biomass growth, while MR-1 continuously reprograms the
intracellular flux distributions in adaption to nutrient
conditions. This innovative dFBA framework can be widely
used to investigate transient cell metabolisms in response
to environmental variations. Furthermore, the dFBA is able
to simulate metabolite-labeling dynamics in 13C-tracer
experiments, and thus can serve as a springboard to
advanced 13C-assisted dynamic metabolic flux analysis by
using labeled proteinogenic amino acids to improve flux
results.

dFBA of Dynamic MR-1 Metabolism
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Figure 2. Monod model for growth kinetics. The green dots are the measurements, and the blue lines are the simulated growth by the
empirical Monod model.
doi:10.1371/journal.pcbi.1002376.g002

Table 1. Parameters estimated in the empirical Monod model.

Symbols Notation Unit Value

mmax,L Maximum specific growth rate using lactate h21 0.5760.11

mmax,P Maximum specific growth rate using pyruvate h21 0.1460.02

mmax,A Maximum specific growth rate using acetate h21 0.1360.02

YX/L Apparent biomass yield coefficient from lactate g DCW/mol lactate 17.061.3

YX/P Apparent biomass yield coefficient from pyruvate g DCW/mol pyruvate 16.761.3

YX/A Apparent biomass yield coefficient from acetate g DCW/mol actate 11.164.7

Ks,l Monod lactate saturation constant mM 19.467.9

Ks,p Monod pyruvate saturation constant mM 19.468.1

Ks,a Monod acetate saturation constant mM 10.162.2

kal Acetate production coefficient from lactate LN (hNg DCW)21 0.7160.06

kpl Pyruvate production coefficient from lactate LN (hNg DCW)21 0.4560.04

kap Acetate production coefficient from pyruvate LN (hNg DCW)21 0.9460.08

ke Endogenous metabolism rate constant h21 0.01360.016

tL Lag time in growth h 7.1060.01

doi:10.1371/journal.pcbi.1002376.t001

dFBA of Dynamic MR-1 Metabolism
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(Figure 3). To account for the suboptimal metabolic features

[7,8,9], we used a dual-objective function in dFBA: a combina-

tion of ‘‘maximize growth rate’’ and ‘‘minimize overall flux’’. By

appropriately weighing both objectives, we explored the trade-

offs between optimal cell growth and minimal enzyme usage.

Specifically, the Monod model determined the transient growth

rate for each time interval, which tuned the weights in the dual-

objective functions for the mini-FBAs so that the biomass growth

curve simulated by dFBA was in agreement with experimental

observations. Figure 3 showed that the optimal dual-objective

function in mini-FBAs was time-dependent. In general, these

dual-objective functions were invariable before the carbon

substrate switched from lactate to acetate/pyruvate. When lactate

became scarce, the weight of ‘‘minimizing overall flux’’ in the

objective function increased significantly, indicating an intracel-

lular reduction of enzyme synthesis and minimization of

intracellular fluxes.

Dynamic flux distributions in MR-1
The dynamic flux distributions in MR-1 were calculated using

the bi-level optimization (Figure 4). The carbon flows to

extracellular acetate and pyruvate were high when lactate was

sufficient (,33% and ,25% of the lactate uptake flux before the

carbon substrate switch, respectively). Fluxes into the gluconeo-

genesis pathway, reductive PP pathway, and ED pathway were

mainly for biomass synthesis, and remained approximately

constant during the exponential growth phase. In the middle log

phase (22,25 hours), when the growth rate reached the

maximum, fluxes in the oxidative TCA cycle reached a peak

(e.g., ,6 mmol/g DCW/h for succinyl-CoA synthetase) to

generate energy and building blocks. When lactate became scarce

(25,30 hrs), MR-1 had to utilize its waste metabolites (acetate and

pyruvate). During this metabolic shift, most intracellular fluxes

started to decrease. In the late log growth phase (30,34 hrs), it

was also observed that the glyoxylate shunt was up-regulated

compared to TCA cycle fluxes after acetate became the main

carbon source for MR-1 growth. The glyoxylate shunt reduced the

oxidation of carbon substrate for CO2 production by diverting the

carbon flow into a shorter metabolic route. The glyoxylate shunt

activity was further confirmed by in vitro enzyme assays at both the

mid-log phase (malate synthase activity was 0.1860.11 mmol/g

DCW/min) and the late-log phase (malate synthase activity was

0.3760.17 mmol/g DCW/min).

Simulation of dynamic 13C-labeling in proteinogenic
amino acids

In 13C-labeled tracer experiments, dFBA can be used to

predict the isotopomer dynamics in slow turnover metabolites,

such as proteinogenic amino acids. During MR-1 growth with

[3-13C] lactate, the dynamic metabolism led to variations of

labeling patterns in intracellular metabolites (biomass precursors)

so that the isotopic labeling in proteinogenic amino acids was

continuously changing during cell growth [18]. Here, we

simulated the time-integrative labeling patterns in proteinogenic

amino acids based on fluxes from dFBA. The predicted

isotopomer labeling patterns of five proteinogenic amino acids

Figure 3. Prediction of growth rates (h21). Blue #: growth rate determined by the Monod model. Red #: dFBA prediction using the objective
function (maximization of growth rate). Green %: dFBA prediction using dual-objective functions (maximization of growth rate and minimization of
overall flux). Yellow e: the weight of the dual-objective functions that predicted the measured growth rates. Note: the summation of the square of
fluxes (gv2) was a very large number (total 774 fluxes), so the magnitude of weight w was small.
doi:10.1371/journal.pcbi.1002376.g003

dFBA of Dynamic MR-1 Metabolism
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(Ala, Ser, Glu, Asp, and Gly, at t = 24 and 30 h) are illustrated in

Figure 5A and Figure S1. Compared with the experimental

measurements, the labeling patterns predicted by dFBA are

consistent with the measured labeling patterns, but some lack-of-

fit still exists. One of the limitations of the FBA model is that the

intracellular pathway is treated as unidirectional, so the effect of

exchange fluxes on isotopomer data is neglected. Considering

that some in vivo reactions could be bi-directional, we imple-

Figure 4. Dynamic flux distributions (unit: mmol/g DCW/h) in central metabolic pathways. The yellow filled cycles are intracellular
metabolites; the blue filled cycles are substrates and extracellular metabolites (LAC: extracellular lactate, PYR: extracellular pyruvate, ACT: extracellular
acetate); the dashed lines indicate inactive pathways; the green filled boxes are reactions listed in iSO783. All the abbreviations refer to iSO783 [7].
doi:10.1371/journal.pcbi.1002376.g004

dFBA of Dynamic MR-1 Metabolism
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mented exchange coefficients for four pathways (e.g., the

anaplerotic pathway: pyruvateRmalate) in the model to improve

the simulation of 13C-labeling (Table 2). After introduction of the

exchange coefficients, the measured and the simulated isotopo-

mer data for proteinogenic amino acids matched (R2 = 0.9619,

Figure 5B).

Figure 5. Experimentally observed and simulated isotopomer labeling patterns [M-57]+ in proteinogenic amino acids. The standard
error for GC-MS measurement was below 0.02. A1: dynamic isotopomer simulation for glutamate from dFBA without considering reaction
reversibility (dFBA w/o reversibility). A2: dynamic isotopomer simulation for glutamate from dFBA considering reaction reversibility (dFBA w/
reversibility). Bar plot: comparison of experimentally observed isotopomer labeling to simulated isotopomer labeling patterns of glutamate (A1:
without considering reaction reversibility; A2: considering reaction reversibility). B: The model fitting of the isotopomer labeling data of five key
amino acids (Ala, Gly, Ser, Asp, and Glu) at t = 24 and 30 h.
doi:10.1371/journal.pcbi.1002376.g005

dFBA of Dynamic MR-1 Metabolism
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Discussion

dFBA models have been developed to describe the dynamic

metabolism of E.coli [10], Saccharomyces cerevisiae [19], Lactococcus

lactis [12], and even for a more complicated coculture system of

E.coli and Saccharomyces cerevisiae [20]. In this study, we developed

dFBA for analyzing metabolic states of S. oneidensis MR-1. The

time-dependent inflow/outflow fluxes for dFBA can be con-

strained by either a Monod model or other empirical models (such

as polynomial-fitting to the measurement data [21]). The Monod

model is suitable to uncover kinetic properties of a scale-up

bioprocess and empowers the dFBA to correlate the bioprocess

parameters (such as nutrient concentrations and inhibition

coefficients) with intracellular metabolism analysis. The integra-

tion of the Monod model and dFBA can decipher and predict cell

metabolisms in response to batch fermentation conditions.

To describe biological realities, a physiologically reasonable

objective function is important for FBA. For E.coli metabolism, 11

objective functions have been systemically investigated under

different cultivation conditions [7]. It turns out that no single

objective function can describe metabolic states accurately for all

conditions. A recent study of MR-1 indicated that futile cycles may

be operational, in which less energetically efficient enzymes are

expressed at higher levels than their counterparts and decrease

biomass yield [17]. Such suboptimal metabolic features in MR-1

make the conventional objective functions difficult to use in

predicting actual cell physiology. To bridge the gap between the in

silico simulations and experimental observations, we assigned dual-

objective functions to resolve mini-FBAs. Using dual-objective

functions, dFBA accurately predicted the elevated flux ratio of the

glyoxylate shunt (represented by malate synthase activity) to the

oxidative TCA cycle (represented by fumarase activity) when

acetate started to be used as the main carbon substrate (Figure S2).

The up-regulation of the glyoxylate shunt and down-regulation of

the oxidative TCA pathways were consistent with a previous 13C-

metabolic flux analysis of MR-1 [18]. In comparison, this transient

metabolic shift in the glyoxylate shunt could not be captured by a

single objective function, such as maximal biomass growth.

Moreover, our dFBA results showed the weight of the two

objective functions remained relatively constant when lactate was

sufficient. At the early stage of MR-1 growth, such a pseudo-steady

state has been experimentally verified by previous isotopomer-

based analysis [18]. Under nutrient scarcity conditions, MR-1

metabolism may reduce synthesis and usage of enzymes to achieve

a compromise between minimization of general physiological

activities and maintenance of essential cellular functions [22].

The dFBA model can also simulate time-dependent isotopomer

enrichment in proteinogenic amino acids. In turn, the isotopomer

results (Figure 5) can be used to validate and improve the dFBA

model predictions. For example, our dFBA model predicted low

fluxes through malic enzyme during the exponential growth

because these pathways may reduce biomass production, while the

genetic analysis indicates a high functionality of malic enzyme

[17]. In the dynamic isotopomer simulations, we found that the

fitting of isotopomer labeling patterns was significantly improved

by introducing the bi-directional fluxes through the pathway

Malate « CO2+Pyruvate, while keeping the net flux minimal.

Such reversible reactions suggest metabolic flexibility. The activity

of malic enzyme was also confirmed by in vitro enzyme assays at

both the mid-log phase (malic enzyme activity was

0.9060.18 mmol/g DCW/min) and late-log phase (malic enzyme

activity was 1.7360.81 mmol/g DCW/min).

Proteinogenic amino acids are abundant in biomass and can

easily be measured by GC-MS. Complementing this instrumental

data, 13C-metabolic flux analysis (MFA) offer analytic insight into

the cell metabolisms in fermentation processes [3,23,24]. Howev-

er, the turnover rate of protein is much slower than that of

intracellular metabolites, so 13C-MFA is useful only for analyzing

the steady-state central metabolism. To perform 13C-MFA of

dynamic flux distributions, the fast turnover metabolites have to be

extracted and analyzed at multiple time points [1,3], which

requires significant sampling efforts and high-sensitivity analytical

measurement of low-abundance/unstable metabolites. Moreover,

the calculation of dynamic fluxes with isotopomer data formulates

an inverse nonlinear optimization problem, which is computa-

tionally challenging. Due to insufficient methods for analyzing low

abundance metabolites [25], as well as limitations in computa-

tional algorithms, dynamic 13C-MFA cannot resolve the flux

distributions in a large-scale metabolic network. To overcome

these difficulties, this study illustrates a proof-of-concept approach

that exploits the synergy between proteinogenic-amino-acid-based
13C-MFA and genome-scale dynamic flux balance analysis.

In our dFBA, the Monod model is solved first independently of

the FBA. As an alternative approach, we also tested to integrate

the kinetic models with FBA (integrative Flux Balance Analysis,

iFBA). iFBA simultaneously optimizes the kinetic model param-

eters and solves the dynamic cell metabolism in MR-1 (Supple-

mentary Text S1). We found that iFBA also requires a dual

objective function, a weighted combination of ‘‘maximizing

growth rate’’ and ‘‘minimizing overall flux’’, to improve the

model accuracy, similar to the dFBA approach. Such results

indicate that it is difficult to use a single objective to describe the

flux states under all growth conditions, while the time-dependent

trade-off objective functions are effective for analyzing the

dynamic suboptimal metabolism.

In conclusion, as in other FBA studies, the dFBA framework

proposed in this study links macroscopic bioprocess variables (such

as nutrient concentrations) to microscopic intracellular metabolism

analysis. It predicts metabolic responses under dynamic culture

conditions, and reveals the impact of the kinetic parameters (such

as mmax) on intracellular flux distributions. Furthermore, dFBA can

identify the objective functions that are possibly used by

microorganisms in adaption to environmental variations. Finally,

by simulating and comparing the isotopomer labeling patterns of

Table 2. Exchange coefficients for key metabolic pathways of MR-1.

Pathways Abbreviation Exchange coefficients Confidence intervals

Malate « CO2+Pyruvate ME2 0.862 [0.803 0.921]

Serine « Glycine+C1 unit GHMT 0.270 [0.062 0.477]

Glycine « C1 unit+CO2 GLYCL 0.109 [0.061 0.157]

Succinate « Succinyl-CoA SUCOAS 0.944 [0.906 0.983]

doi:10.1371/journal.pcbi.1002376.t002
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different metabolites, the proposed dFBA framework can poten-

tially improve dynamic flux resolutions by incorporating the

isotopomer data from labeled proteinogenic amino acids.

Materials and Methods

Culture conditions, analytical methods, and isotopomer
analysis

S. oneidensis MR-1 (ATCC 70050) was first grown in LB medium

in shake flasks overnight. A 0.1% inoculum volume was then

cultured into modified MR-1 defined medium [26] in shake flasks

(100 mL culture for each of triplicate experiments, shaken at

150 rpm) at 30uC. The initial carbon source was ,30 mM lactate.

The growth curve was monitored by dried biomass weight. The

concentrations of lactate and acetate in the medium were

measured using enzyme kits (r-Biopharm, Darmstadt, Germany).

The concentration of pyruvate in the medium was measured with

the enzyme assay developed by Marbach and Weli [27].

To analyze the activity of malate synthase and malic enzyme,

samples were taken at early middle log phase (biomass of MR-1

,0.08 g/L) and late log phase (biomass of MR-1 ,0.23 g/L). The

harvested cells were centrifuged and re-suspended in 100 mM Tris

buffer. The samples were then ultra-sonicated for 5 min to release

the enzymes. Malate synthase activity was gauged based on the

reaction of CoASH with DTNB (Acetyl-CoA+glyoxylateRMala-

te+CoASH; CoASH+DTNBRCoA-TNB+TNB), as described by

Dixon and Kornberg [28]. In general, 20 mL acetyl-CoA (5 mM),

10 mL DTNB (10 mM), 50 mL cell extract, and 500 mL of a

solution containing 0.1 M potassium phosphate and 10 mM

MgCl2 were mixed with water. The mixture was then added with

20 mL 100 mM glyoxylate. The difference in absorbance at OD412

before and after glyoxylate addition reflected the activity of malate

synthase, in which one unit DOD412 corresponded to 70.6 nmol of

TNB produced (in a 1 mL reaction solution). Furthermore, the

activity of malic enzyme was detected based on increased

absorbance at 340 nm due to the reduction of NAD+ to NADH

[29]. In brief, 400 mL 250 mM Tris HCl, 20 mL 50 mM MnCl2,

25 mL 40 mM NH4Cl, 100 mL 1 M KCl, 50 mL 20 mM NAD+,

100 mL 100 mM malate, and 50 mL cell extract were mixed with

water (1 mL reaction solution). The change in absorbance at

OD340 reflected the activity of malic enzyme.

In the labeling experiment, MR-1 was first grown overnight in

the LB medium in shake flasks. A 0.1% inoculum volume was then

cultured into 100 mL of modified MR-1 defined medium at 30uC,

with the initial carbon source as 30 mM [3-13C] lactate

(purity.98%) purchased from Cambridge Isotope Laboratories,

Inc. (Andover, MA). The biomass was harvested at ,24 h (before

lactate was depleted) and ,30 h (after the substrate had switched

from lactate to waste products). To analyze the labeling pattern of

proteinogenic amino acids, we hydrolyzed the biomass with 6 M

HCl at 100uC. The isotopic analysis of proteinogenic amino acids

was performed using a GC-MS based TBDMS method, as

previously described [30,31,32]. Ions of [M-57]+ (unfragmented

amino acid) were used for the 13C-simulations [33].

Monod model development
A multiple-substrate Monod model was developed to describe

the cell growth, lactate consumption and secretion, and reuse of

waste products (acetate and pyruvate).

dLACT

dt
~({

X:mL

YX=L

{rP,L{rA,L):S(t{tL) ð1Þ

dACT

dt
~(rA,LzrA,P{

X:mA

YX=A

):S(t{tL) ð2Þ

dPYR

dt
~(rP,L{

X:mP

YX=P

{rA,P):S(t{tL) ð3Þ

dX

dt
~X:(mAzmPzmL{ke):S(t{tL) ð4Þ

where X is biomass (g DCW/L); LACT, ACT, and PYR are lactate,

acetate, and pyruvate concentrations (mmol/L), respectively; mL,

mA, and mP are the specific growth rates (h21) on lactate, acetate,

and pyruvate, respectively; ke is the endogenous metabolism rate

constant (h21); YX/L, YX/A, and YX/P are the biomass yield

coefficients (g DCW/mol substrate) of lactate, acetate, and

pyruvate respectively; rP,L and rA,L are the production rates

(mmol/L/h) of acetate and pyruvate from lactate, respectively. rA,P

is the production rates (mmol/L/h) of acetate from pyruvate.

S(t2tL) is the dimensionless unit-step time delay function (S = 0

when t,tL; S = 1 when t = tL) which described the lag phase after

inoculation.

The specific cell growth rate was described by Monod

equations:

mL~
mmax,L

:LACT

Ks,lzLACT
ð5Þ

mA~
mmax,A

:ACT

Ks,azACT
ð6Þ

mP~
mmax,P

:PYR

Ks,pzPYR
ð7Þ

where mmax,L, mmax,A, and mmax,P are the maximal growth rates (h21)

for fully aerobic growth on lactate, acetate, and pyruvate,

respectively; and Ks,l, Ks,a, and Ks,p are Monod constants (mmol/

L) for lactate, acetate, and pyruvate, respectively. The acetate and

pyruvate production rates are assumed to be proportional to the

biomass [16], as expressed below:

rA,L~kal
:LACT:X ð8Þ

rP,L~kpl
:LACT:X ð9Þ

rA,P~kap
:PYR:X ð10Þ

where kal and kpl are rate constants of acetate and pyruvate

production, respectively (LN (hNg DCW)21). kap is the rate constant

of acetate production from pyruvate (LN (hNg DCW)21).

The kinetic model (Equations 1,10) contained 14 kinetic

parameters. To estimate the model parameters, an ordinary least

squares (OLS) method [34] was applied to solve the inverse

problem. OLS aimed to minimize the residual sum of the squares

(R) between model simulations and experimental measurements,

dFBA of Dynamic MR-1 Metabolism
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expressed as

R~½Y{g(t; b)�T ½Y{g(t; b)� ð11Þ

where g represents four dependent variables simulated by the

kinetic model; b represents the vector of the parameters to be

estimated; and Y is the vector of the measured value of the

dependent variables. Since the scales of the dependent variables

were different (e.g., the scale of the biomass measurement was

,1 g/L, while the lactate measurement .10 mmol/L), the direct

application of OLS would overemphasize the fitting of dependent

variables with large scales. Therefore, we normalized dependent

variables by the corresponding maximum concentrations mea-

sured in the experiments.

The ‘‘ode23’’ command in MATLAB (R2009a, Mathworks)

was used to solve ODEs, and the ‘‘fmincon’’ command was used to

find suitable settings of the parameters. Figure S3 is the histogram

of normalized model residuals. The standard deviations of the

parameters were derived from a bootstrap analysis, in which the

experimental measurements were randomly re-sampled 1000

times and the corresponding parameters were simulated with the

same parameter estimation approach. The 1000 re-sampling was

found to be adequate since the variation of parameters converged

to within a desired tolerance of 0.1%. The MATLAB code of

parameter estimation in the Monod model was attached in

Dataset S1.

Bi-level dFBA study
The growth phase was divided into 408 pseudo-steady-state

intervals with instantaneous transitions between the two adjacent

intervals [11]. At each pseudo-steady state (,five minutes) [35], a

mini-FBA was formulated by a dual-objective function comprised

of ‘‘maximizing the growth rate’’ and ‘‘minimizing overall flux’’;

and inflow/outflow fluxes (for lactate, acetate, and pyruvate)

derived from the Monod model. The inflow/outflow fluxes were

calculated from:

dLACT

dt
~{vlac inf low

:X ð12Þ

dACT

dt
~vact outflow

:X ð13Þ

dPYR

dt
~vpyr outflow

:X ð14Þ

where vlac_inflow, vact_outflow, and vpyr_outflow are transient lactate

inflow flux, acetate outflow flux, and pyruvate outflow flux,

respectively.

At each pseudo steady state, the mini-FBA followed a bi-level

optimization framework similar to ObjFind [36]. The internal

optimization was an FBA with a combined objective function in

which the weighting factor of ‘‘minimizing overall flux’’ ranged

from zero to one. The difference between the transient growth rate

simulated from the FBA and that derived from the Monod model

was minimized in the external optimization, by tuning the

weighting factor in the combined objective function. The bi-level

optimization determined a trade-off between maximizing growth

rate and maximizing enzyme efficiency under the specified growth

conditions. The bi-level optimization was formulated as:

min (mMonod-mFBA)2

s:t:

min ½w:
P

i

v2

i
{(1{w):mFBA�

s:t:

S:v~0

lbƒvƒub

vlac inf low, vact outflow, vpyr outflow from the Monod model

2
6666666664

3
7777777775

0ƒwƒ1

ð15Þ

where mmonod and mFBA are transient growth rates derived from the

Monod model and the dFBA study, respectively; w is the weight of

‘‘minimizing overall flux’’ in the combined objective function; v is

the vector of the intracellular fluxes; S is the stoichiometry matrix;

lb and ub are the lower and upper boundaries for intracellular flux.

The internal optimization was a typical quadratic programming

(QP) problem and was solved using the CPLEX solver in the

TOMLAB optimization toolbox (TOMLAB Optimization Inc,

Seattle, WA) within MATLAB (R2009a). The external optimiza-

tion problem (i.e., search for weight) was solved by a grid search.

Since the QP problem in this study was convex, the locally

searched results were also the global solutions [37]. The MATLAB

code of bi-level dFBA was attached in Dataset S1.

Simulation of dynamic 13C-labeling in proteinogenic
amino acids

Our previous 13C-MFA study of MR-1 showed that the labeling

patterns in its proteinogenic amino acids changed during the late-

stage of batch growth [18]. Using the dynamic flux distributions

from dFBA, we could now simulate dynamics of isotopomer

labeling patterns in proteinogenic amino acids using the algorithm

below.

min
X5

i~1

(MDVi, exp t~24hj {MDVi,sim t~24hj )2

s2
i

z

X5

i~1

(MDVi, exp t~30hj {MDVi,sim t~30hj )2

s2
i

s:t: vexch~
exch

1{exch

0ƒexchƒ1

f [½v,vexch�

IDV(t)~

Pn
i~1

fi(t):(IMMk1
:IDVk16IMMk2

:IDVk2 � � � )

Pn
i~1

fi(t)

IDVint t~t0j ~

Ðt0
0

p(t):IDV (t):Dt:DX (t)

Ðt0
0

p(t):Dt:DX (t)

MDVi,sim t~24hj ~M:IDVint t~24hj
MDVi,sim t~30hj ~M:IDVint t~30hj

ð16Þ
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Since FBA neglects flux reversibility, we implemented exchange

coefficients exch to account for the reversibility of four key

metabolic pathways (ME2, GHMT, GLYCL, and SUCOAS in

iSO783, Table 2). In Equation 16, vexch is the vector of exchanged

fluxes in the reversible reactions; v is the vector of the transient

fluxes at the t9 interval, simulated from the mini-FBA; p(t) are

fluxes to proteinogenic amino acids at each time interval; Dt is the

scale of a pseudo steady state (5 min); DX(t) is the biomass

produced at each time interval; IMM is the isotopomer mapping

matrices describing the carbon atoms transitions from reactants to

products in a reaction; IDV(t) are the isotopomer distribution

vectors of transient intracellular metabolites at each time interval,

which is calculated based on the different labeling patterns of

precursors from n pathways; IDVint|t = t9 are the isotopomer

distribution vectors in proteinogenic amino acids at the end of

the t9 time interval; MDVi,sim and MDVi,exp are the mass distribution

vectors for each of the five proteinogenic amino acids, as simulated

and as measured by GC-MS, respectively; M is the matrix for

converting IDV to MDV; si is the standard deviation of the GC-

MS measurement (error ,2%), which is assumed to be constant in

this study. The carbon transitions in the reactions involved were

given in Supplementary Text S2, and the SBML file for the

metabolic model of Shewanella oneidensis MR-1 was provided in

Supplementary Text S3. The ‘‘fmincon’’ command in MATLAB

was used to find the exchange coefficients, and the ‘‘nlparci’’

command in MATLAB (Dataset S1) was used to find the

asymptotic confidence intervals of the exchange coefficients.

These exchange coefficients significantly improved dFBA simula-

tion of the labeling patterns in proteinogenic amino acids.

Supporting Information

Dataset S1 MATLAB codes used for mathematical modeling.

(RAR)

Figure S1 Experimental observed and simulated isotopomer

labeling patterns [M-57]+ in key proteinogenic amino acids. The

standard error for GC-MS measurement was ,0.02. Area plot:

dynamic isotopomer simulation (case 1: simulation without

considering reaction reversibility; case 2: simulation considering

reaction reversibility). Bar plot: comparison of experimental data

to simulated isotopomer labeling patterns (case 1: without

considering reaction reversibility; case 2: considering reaction

reversibility).

(DOC)

Figure S2 Flux ratio of malate synthase (MALS) and fumarase

(FUM) in dynamic metabolism of Shewanella oneidensis MR-1. Blue

&: time profiles of flux ratio using ‘‘maximizing growth rate’’ as

the objective function in dFBA; red m: time profiles of flux ratio

using dual-objective function in dFBA: a combination of

‘‘maximize growth rate’’ and ‘‘minimize overall flux’’. The entire

growth of MR-1 was divided into three phases. In phase I, lactate

was mainly used as the carbon substrate. In phase II, lactate,

acetate and pyruvate were used as the carbon substrates. In phase

III, acetate was used as the carbon substrate.

(DOC)

Figure S3 Histogram of normalized Monod model residuals.

(DOC)

Table S1 Lack-of-fit test for the Monod model.

(DOC)

Text S1 Framework of integrative Flux Balance Analysis (iFBA).

(DOC)

Text S2 Reactions involved in 13C-labeling simulations.

(DOC)

Text S3 SBML file of the metabolic model for Shewanella

oneidensis MR-1.

(DOC)
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