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Abstract Parameters often are tuned with metabolite concen-
tration time series data to build a dynamic model of metabolism.
However, such tuning may reduce the extrapolation ability (gen-
eralization capability) of the model. In this study, we determined
detailed kinetic parameters of three purified Escherichia coli gly-
colytic enzymes using the initial velocity method for individual en-
zymes; i.e., the parameters were determined independently from
metabolite concentration time series data. The metabolite con-
centration time series calculated by the model using the parame-
ters matched the experimental data obtained in an actual multi-
enzyme system consisting of the three purified E. coli glycolytic
enzymes. Thus, the results indicate that kinetic parameters can
be determined without using an undesirable tuning process.
� 2007 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.

Keywords: Dynamic simulation; Mathematical model;
Enzyme kinetics; Metabolism; Glycolysis
1. Introduction

Dynamic simulation is a powerful method for analyzing the

complex behavior of metabolic systems, which involve many

enzymatic reactions. A detailed dynamic model of a metabolic

system usually is constructed using several enzymatic rate

equations, such as the Michaelis–Menten equation, to which

kinetic parameters collected from the literature reports are

applied. However, in most cases, kinetic models constructed

from reported literature values inadequately simulate the

metabolism of living cells [1]. One reason for this is the differ-

ence in the in vitro and in vivo kinetic parameters [1]. Optimal

conditions applied to activity measurements of an enzyme usu-

ally are not similar to intracellular conditions [2]. Moreover,

special phenomena, such as protein–protein interactions [3]

or metabolic channeling [4], may occur in actual cells.
Abbreviations: ALD, aldolase (EC 4.1.2.13); DTT, dithiothreitol; F6P,
fructose-6-phosphate; FDP, fructose-1,6-diphosphate; G3PDH, glyc-
erol-3-phosphate dehydrogenase (EC 1.1.1.8); G6P, glucose-6-phos-
phate; G6PDH, glucose-6-phosphate dehydrogenase (EC 1.1.1.49);
Glk, glucokinase (EC 2.7.1.2); IPTG, isopropyl-b-DD-thiogalactopyra-
noside; MOPS, 3-morpholinopropanesulfonic acid; Pfk, phosphofruc-
tokinase (EC 2.7.1.11); Pgi, phosphoglucoisomerase (EC 5.3.1.9);
TIM, triose phosphate isomerase (EC 5.3.1.1)
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Parameter tuning by applying experimental results, usually

data from time series of metabolite concentrations, is per-

formed to match models to experimental data [5–7]. The tun-

ing processes can involve non-physical (empirical) power-law

equations such as S-System or generalized mass action

(GMA) [8,9], or non-mechanistic models [10] (lumped model

[11], unstructured model [12]). These approaches reproduce

metabolite time series data used for tuning [10,13,14].

However, the tuned parameters are not always unique and

may lose physicochemical meaning, or may produce para-

meters with unclear physiological meaning. For example, the

Michaelis–Menten constant (Km) has a physicochemical mean-

ing of ‘‘the substrate concentration that indicates one-half

maximum velocity of an enzyme reaction’’. However, once a

model consisting of Michaelis–Menten equations is converted

to an S-system or a GMA model, tuned coefficients in the con-

verted rate equations no longer have such specific meanings.

Furthermore, a model optimized for matching time series

data sets may not be predictive under other conditions. One

important purpose of simulation studies is to predict responses

of the system under unexamined conditions. To achieve this,

physical (theoretical) and mechanistic models using parameters

obtained independently from particular metabolite time series

data are needed to allow extrapolation. However, no studies

have reported mechanistic models constructed using enzyme

kinetic equations with physiologically meaningful parameter sets,

which accurately estimate the behavior of a multi-enzyme system.

Here, we validate a dynamic model consisting of individual

enzyme kinetic equations using an in vitro system without

the difficulties inherent in in vivo systems. We purified three

glycolysis enzymes in Escherichia coli and determined their

individual kinetic parameters under identical conditions. Sub-

sequently, a multi-enzyme system consisting of the three puri-

fied enzymes was constructed under the same conditions used

for measurements of the kinetic parameters. A time series of

metabolites in the multi-enzyme system was obtained and com-

pared with calculated values from a dynamic simulation using

kinetic parameters measured in each single-enzyme system.

Inactivation of each enzyme was experimentally evaluated

and incorporated in the simulation.
2. Materials and methods

2.1. Expression and purification of protein
The E. coli strains included in the ASKA clone library [15], which is

based on E. coli K-12 strain AG1 ½recA1 endA1 gyrA96 thi-1 hsdR17
blished by Elsevier B.V. All rights reserved.
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ðr�K mþK Þ supE44 relA1�, were used. Cells producing histidine-tagged
protein (Glucokinase (EC 2.7.1.2) (Glk), phosphoglucoisomerase (EC
5.3.1.9) (Pgi), and PfkA) from the ASKA clone were grown at 37 �C
in 200 ml of LB medium supplemented with 50 lg/ml chloramphenicol
to OD600 0.5. Samples were obtained 2 h after addition of 0.1 mM iso-
propyl-b-DD-thiogalactopyranoside (IPTG). The cells were collected by
centrifugation (6000 r.p.m., 5 min at 4 �C) and resuspended in 10 ml
of cold buffer I [50 mM sodium phosphate (pH 7.0), 200 mM NaCl,
Protease inhibitor (Complete Mini EDTA-Free, Roche Diagnostics,
Basel, Switzerland)]. All subsequent manipulations were conducted at
4 �C. Crude cell extracts were obtained by sonication [10 · 5 s, level
3, ultrasonic disruptor UD-201 (TOMY, Tokyo, Japan)] and centrifu-
gation (9000 r.p.m., 20 min at 4 �C). Crude cell extracts were loaded
onto a 2-ml nickel (Ni2+) column [prepared according to manufac-
turer’s instructions (QIAGEN) and equilibrated with buffer I]. Affinity
chromatography of the extracts was performed at 4 �C. Loaded col-
umns were washed three times with 7 ml of buffer II (buffer I containing
20 mM imidazole) and proteins were eluted with buffer III (buffer I con-
taining 250 mM imidazole). Finally, enzymes were stored in buffer III
containing 20% glycerol at �20 �C until use. Their concentration then
was measured using BCA protein assay reagent (Pierce Chemicals).

2.2. Kinetic rate equations
Kinetic rate equations are shown in Table 1. The rate equation for

Glk is shown in this study (see Section 3.1). Other equations were
taken from the literature reports.

2.3. Kinetic analysis
All enzyme kinetic assays were conducted at 37 �C in 100 mM 3-mor-

pholinopropanesulfonic acid (MOPS) buffer (pH 7.2) containing 2 mM
dithiothreitol (DTT). Enzyme was added to a concentration between
0.001 lM and 5 lM. Glk activity was measured using 8 U/ml Glu-
cose-6-phosphate dehydrogenase (EC 1.1.1.49) (G6PDH), 1 mM
NADP, 20 mM MgCl2, and various concentrations of glucose and
ATP. Pgi forward reaction activity (G6P to F6P) was measured using
1.8 U/ml aldolase (EC 4.1.2.13) (ALD), 31 U/ml Glycerol-3-phosphate
dehydrogenase (EC 1.1.1.8) (G3PDH), 90 U/ml triose phosphate isom-
erase (EC 5.3.1.1) (TIM), 12 U/ml phosphofructokinase (EC 2.7.1.11)
(Pfk), 0.2 mM NADH, 5 mM MgCl2, and various concentrations of
Glucose-6-phosphate (G6P). Pgi reverse reaction activity (F6P to
G6P) was measured using 0.1 mM NADP, 1.8 U/ml G6PDH, and var-
ious concentrations of fructose-6-phosphate (F6P). PfkA activity was
measured using 0.1 mM NADH, 5 mM MgCl2, 1.8 U/ml ALD, 31 U/
ml G3PDH, 90 U/ml TIM, and various concentrations of ATP and
F6P. For all assays, absorbance at 340 nm (A340) was recorded and ini-
tial velocities calculated from the slope of the lines. Kinetic constants
were calculated from substrate concentrations and corresponding initial
Table 1
Kinetic rate equations [v, specific activity (U/mg); Vmax, maximum velocity (U
n, Hill’s n]

Enzyme Reaction Rate

Glk Glucose + ATP fi G6P + ADP (irreversible)

v ¼

Pgi G6P M F6P (reversible)

v ¼

PfkA F6P + ATP fi FDP + ADP (irreversible)

v ¼

Each suffix for C or Km denotes corresponding metabolite.
velocities by the Levenberg–Marquardt nonlinear least squares algo-
rithm [16]. One unit of Glk activity was defined as the amount of enzyme
needed to catalyze the phosphorylation of 1 lmol glucose in one minute.
One unit of forward reaction of Pgi activity was defined as the amount of
enzyme per minute needed to catalyze the isomerization of G6P. One
unit of reverse reaction of Pgi activity was defined as the amount of en-
zyme per minute needed to catalyze the isomerization of F6P. One unit
of PfkA activity was defined as the amount of enzyme needed to catalyze
the phosphorylation of 1 lmol F6P per minute. One unit of G6PDH,
ALD, G3PDH, or TIM was defined according to manufacturer’s
instructions (Roche Diagnostics).

2.4. Equilibrium constant of Pgi forward reaction
An amount of 0.05 lM Pgi was added to 100 mM MOPS buffer (pH

7.2) containing 1 mM G6P and 2 mM DTT, and the reaction solution
incubated at 37 �C. Samples taken at predetermined time points were
mixed with a 4-fold volume of methanol at 0 �C. The inactivated Pgi
was removed by filtration through a centrifugal filter (Biomax, 5000
molecular weight cutoff, Millipore). The filtrate was freeze-dried imme-
diately and dissolved in water prior to measuring the metabolite con-
centration. The equilibrium constant of the Pgi forward reaction was
calculated using concentrations of G6P and F6P once they had
achieved a constant value.

2.5. Enzyme inactivation analysis
Activity of an enzyme was measured, followed by addition of

0.05 lM enzyme to 100 mM MOPS buffer (pH 7.2) containing various
concentrations of DTT, and the solution was incubated at 37 �C for
1 h. Then, 0.2 ml of the incubated solution was removed and its activ-
ity measured immediately. An activity persistence ratio of the enzyme
examined was obtained by dividing the activity after incubation by the
activity measured before incubation.

2.6. Time series of metabolite concentration in a multi-enzyme system
The metabolic network diagram of the multi-enzyme system exam-

ined in this study is shown in Fig. 1. An amount of 1 mM glucose
was added to 100 mM MOPS buffer (pH 7.2) containing 0.05 lM
Glk, 0.05 lM Pgi, 0.05 lM PfkA, 2 mM ATP, 10 mM MgCl2, and
2 mM DTT, and the reaction solution incubated at 37 �C. Samples
were removed at predetermined time points and processed according
to the procedure outlined in Section 2.4.

2.7. Measurement of metabolite concentrations
A sample was added to 100 mM MOPS buffer (pH 7.2) containing

0.1 mM NADH, 20 mM MgCl2, 5 mM ATP, and 2 mM DTT (I),
and maintained at 37 �C. Then, 1.8 U/ml ALD, 31 U/ml G3PDH,
/mg); C, concentration (mM); Km, Michaelis–Menten constant (mM);

equation Source

V max � Cglucose � CATP

ðKm;glucose þ CglucoseÞ � ðKm;ATP þ CATPÞ
ð1Þ

This work

V max � CG6P � CF6P

Keq;Pgi

� �

Km;G6P � 1þ CF6P

Km;F6P

� �
þ CG6P

ð2Þ

[7]

V max � Cn
F6P � CATP

Kn
m;F6P þ Cn

F6P

� �
� Km;ATP þ CATPð Þ

ð3Þ

[52]



Fig. 1. Schematic diagram of the metabolic network examined in this
study.

N. Ishii et al. / FEBS Letters 581 (2007) 413–420 415
and 90 U/ml TIM (II), 3 U/ml PfkA (III), 18 U/ml Pgi (IV), and 10 U/
ml Glk (V) were added sequentially, and A340 was recorded at each
step. Concentrations of fructose-1,6-diphosphate (FDP), F6P, G6P,
and glucose were calculated from the difference in A340 between I
and II, II and III, III and IV, and IV and V, respectively. The FDP
concentration of each sample was calibrated by the measured value
of a known concentration standard solution of FDP treated using
the same procedure employed for sample preparation.

2.8. Dynamic simulation
According to Table 1, the ordinary differential equations (ODEs)

describing the velocities of metabolite concentration change in the
tested system can be expressed as

d½Glucose�=dt ¼ �vGlk ð4Þ
d½G6P�=dt ¼ vGlk � vPgi ð5Þ
d½F6P�=dt ¼ vPgi � vPfkA ð6Þ
d½FDP�=dt ¼ vPfkA ð7Þ
d½ATP�=dt ¼ �vGlk � vPfkA ð8Þ
d½ADP�=dt ¼ vGlk þ vPfkA ð9Þ

where t is time (min), vGlk is reaction rate of Glk (mM/min), vPgi is
reaction rate of Pgi (mM/min), and vPfkA is reaction rate of PfkA
(mM/min). Dynamic simulations of the multi-enzyme system based
on Eqs. (4)–(9) were performed using E-Cell 3.1.104 (http://www.e-cell.
org/). Initial concentrations of metabolites were set to the values
described in Section 2.6. The ODE45 algorithm [17] was employed
for numerical integration.

2.9. Parameter tuning with metabolite concentration time series data
Parameter tuning with metabolite concentration time series data ob-

tained in Section 2.6 was performed using the genetic algorithm (GA)
[18]. The fitness function used in the GA calculations is

f ¼
Pnsamplingpoint

i¼1

Pnmetabolite

j¼1

Cdata;i;j�Ccalculated;i;j

Cdata;i;j

� �2

nsamplingpoint � nmetabolite

ð10Þ

where f is fitness function, Cdata,i,j is measured concentration of the jth
metabolite at the ith sampling point (mM), Ccalculated,i,j is calculated
concentration of the jth metabolite at the ith sampling point by tuned
rate equation parameters (mM), nmetabolite is the number of metabo-
lites, and nsampling point is the number of sampling points. The optimi-
zations were performed using two methods: with a constraint that
rate equation parameters should be non-negative, and with no con-
straint for the parameters. MATLAB Release 2006a (MathWorks)
and the Genetic Algorithm and Direct Search Toolbox 2.0.1 (Math-
Works) were employed for the optimizations. ODEs with tuned
parameters were solved by the same method in Section 2.8. In each
GA calculation, the population number was set to 1000. The other
GA parameters were set to default values. Each optimal solution
was taken after the fitness function converged to a constant value.
3. Results

3.1. Kinetic parameters of each enzyme

Kinetic parameters of enzymes tested and the equilibrium

constant of Pgi forward reaction are shown in Table 2. All

measurement data are shown in Figs. 1S and 2S in Supplemen-

tary material.

The kinetic parameters taken from BRENDA (release 08/

2006; http://www.brenda.uni-koeln.de/) [19], one of the most

widely known public enzyme databases, also are shown in

Table 2. Km,glucose of Glk, Km,ATP of Glk, Km,F6P of Pgi, and

Vmax of PfkA displayed good agreement with some of the data-

base values. However, for Km,glucose of Glk and Km,ATP of Glk,

some of the database values did not match the values in this

study, and other parameters in the database differed signifi-

cantly from our values. The kinetic parameters may vary

depending on the strain used and/or experimental conditions

including buffer used, pH, and temperature. Since the data col-

lected in BRENDA were obtained from different strains and

under various conditions, and the strains and/or conditions

were not always same as those of this study, the parameter dif-

ferences between this study and the database is not improb-

able. Furthermore, some parameters required for this study

were not found in BRENDA, especially parameters for com-

plex rate equations, such as Hill’s n for PfkA. Moreover,

although the equilibrium constant for the Pgi reaction is

needed to calculate the reversibility of this enzyme reaction,

the constant also is not registered in BRENDA. Collecting

equilibrium constants is not the purpose of BRENDA, and

equilibrium constants can be calculated from thermodynamic

data [20]. However, actual equilibrium constants depend on

the solution composition, therefore experimentally measured

values are actually required. This information suggests that

current public enzyme databases are not always sufficient for

building an accurate dynamic model of metabolism, thus

parameter-determining experiments performed in under uni-

form conditions are needed.

For the Pgi, Eq. (2) (Table 1) was obtained from the E. coli

model constructed by Chassagnole et al., who reported the

estimated in vivo parameters of Pgi in their study [7]: Km,G6P,

Km,F6P, Keq,Pgi were 2.9 mM, 0.27 mM, and 0.17, respectively.

These values were similar to our values (Table 2), and varia-

tion in Keq,Pgi might reflect the difference in chemical composi-

tion between in vivo and in vitro.

No rate equation for Glk from E. coli has been reported in

the literature, so the reaction rate equation of the Glk was

determined for this study. Double-reciprocal plots [21] of

Glk with two substrate concentrations are shown in Fig. 2.

The slope of the plots of 1/glucose versus 1/v at fixed ATP con-

centration decreased with an increase in ATP concentration,

and all double-reciprocal plots crossed at a point within the

negative area of the 1/glucose axis. From these results, the

reaction mechanism of Glk can be estimated as rapid equilib-

rium Random Bi–Bi [21] or Ordered Bi–Bi with steady-state

assumption [21]. Since the plot crossing point occurred on

the 1/glucose axis, a Random B–Bi reaction mechanism would

give an interaction coefficient between the two substrates of 1

[21]; if the reaction mechanism is Ordered Bi–Bi, the dissocia-

tion constant for first-binding substrate is almost equal to Km

for the first-binding substrate [21]. The true reaction mecha-

nism, Random Bi–Bi or Ordered Bi–Bi, cannot be determined

by the initial velocity analysis [21]. However, since the reaction

http://www.e-cell.org/
http://www.e-cell.org/
http://www.brenda.uni-koeln.de/


Table 2
Kinetic rate equation parameters

Source This work BRENDA
(release 08/2006)

This work This work

Method Initial velocity method Tuning using metabolite
concentration time series
data, with a constrainta

Tuning using metabolite
concentration time series
data, without constraint

Enzyme Parameter Value

Glk Vmax 255 U/mg 158 U/mg 271 U/mg 204 U/mg
Km,glucose 0.12 mM 0.15 mM, 0.78 mMb 0.02 mM 0.35 mM
Km,ATP 0.50 mM 0.50 mM, 3.76 mMb 0.00005 mM �0.50 mM

Pgi Vmax 1511 U/mg N.D. 126 U/mg 142 U/mg
Km,G6P 3.0 mM N.D. 0.00027 mM 0.0066 mM
Km,F6P 0.16 mM 0.2 mM 3.37 mM �0.13 mM
Keq, pgi 0.30 N.D. 0.39 0.39

PfkA Vmax 145 U/mg 184 U/mgc,d, 102 U/mgc,e,
263 U/mg, 190 U/mg, 189 U/mg

23 U/mg 18 U/mg

Km,F6P 0.46 mM 0.096 mMf 0.13 mM 0.10 mM
Km,ATP 0.04 mM 0.10 mMg, 0.21 mMh 0.12 mM 0.04 mM
n (for F6P) 1.9 N.D. 3.0 3.6

N.D. denotes ‘‘no data’’. All parameters from BRENDA are for Escherichia coli. For PfkA data from BRENDA, if pH is specified, only the values
examined under conditions similar to this work (pH 7.2) were used.
aParameters should be non-negative.
bpH 7.65.
cCalculated from turnover number. The molecular weight of PfkA (34834) was obtained from the GenoBase (http://ecoli.naist.jp/GB6/search.jsp).
d4: pH 7.2, 30 �C, at 2 mM ATP.
epH 7.2, 30 �C, co-substrate ATP.
fpH 7.2, 30 �C, co-substrate gamma-thio-ATP.
gpH 7.2, 30 �C.
hpH 7.2, 30 �C.
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Fig. 2. Double-reciprocal plots of Glk with two substrate concentra-
tions [v is the specific activity of Glk (U/mg); Cglucose is glucose
concentration (mM)].
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rate equations of these two reaction mechanisms can be ex-

pressed by the same formula [21], calculating the reaction rates

of Glk can be performed without knowledge of the true reac-

tion mechanism. Thus, Eq. (1) (Table 1) was applied to calcu-

late Glk reaction rates. The calculated reaction rates showed

good agreement with the measured values shown in Fig. 2 (cor-

relation coefficient = 0.988), verifying the propriety of Eq. (1)

(see Fig. 3S in Supplementary material).
3.2. Inactivation of enzymes

In metabolic simulation studies, the kinetic parameters used in

a model usually are assumed to be constant during the reaction.

For initial velocity determination experiments, this assumption

is acceptable because the reaction time is usually very short.

However, in experiments reconstituting a portion of metabolic

system, long reaction times are sometimes undertaken to ob-

serve time-dependent changes in metabolite concentrations.

During such prolonged reaction times, maintaining enzyme

activity is not always possible in an in vitro system. Thus, for

comparison of the experimental data and simulation values,

inactivation of each enzyme should be considered.

Significant inactivation of PfkA at 37 �C was observed

(Fig. 3, DTT concentration of 0.0 mM), which was suppressed

by addition of DTT. Optimal concentration for maintaining

PfkA activity was 2.0 mM (Fig. 3). For Glk and Pgi, an activ-

ity persistence ratio with 2.0 mM DTT was determined, which

revealed that Glk was significantly inactivated (35%). For Pgi,

neither the forward nor the reverse reactions were inactivated

(106% for forward reaction, 90% for reverse reaction).

Maintaining the activity of PfkA, which has a complex

kinetic mechanism, was a priority in this study. For Glk, a

time series for inactivation was obtained (Fig. 4). As shown

in Fig. 4, the rate equation of Glk inactivation was first-order,

with the active and inactive forms of Glk reaching equilibrium.

Thus, the rate equation of Glk inactivation can be described

using the following:

v ¼ kGlk;inactivation CGlk;active �
CGlk;inactive

Keq;Glk;inactivation

� �
ð11Þ

where v is inactivation rate of Glk (lM/min), kGlk,inactivation is

the rate constant (min�1), CGlk,active is the active form of Glk

http://ecoli.naist.jp/GB6/search.jsp
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Fig. 3. PfkA activity persistence ratio determined using predetermined
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Fig. 4. Inactivation time series of Glk. Closed circles represent
experimental data; line indicates values calculated using Eq. (11) with
parameters shown in Table 3.
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Fig. 5. Comparison of calculated and experimental values of the
metabolite concentration time series. Calculations were performed
using the parameters obtained from individual enzyme analyses. Blue
circles represent glucose (experimental); blue line represents glucose
(calculated with consideration of Glk inactivation); blue dotted line
represents glucose (calculated without consideration of Glk inactiva-
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(lM), CGlk,inactive is the inactive form of Glk (lM), and

Keq,Glk,inactivation is the equilibrium constant between active

and inactive Glk. As shown in Fig. 4, the parameters in Eq.

(11) were determined and applied to the following simulation

study.

3.3. Comparison of measured values with simulation values

Measured and calculated time series for metabolite concen-

trations after addition of glucose are shown in Fig. 5. At each

sampling point, the sum of measured concentrations of

glucose, G6P, F6P, and FDP was approximately 1.0 mM

(the initial concentration of glucose), indicating the metabolite

concentration assays were performed properly. Chassagnole

et al. reported that the steady-state concentrations of G6P,

F6P, and FDP in E. coli cells grown in a continuous culture

(dilution rate = 0.1 h�1) were 3.48 mM, 0.60 mM, and

0.27 mM, respectively [7]. These concentrations were close to

the values shown in Fig. 5, indicating our experiment was per-

formed under physiologically meaningful conditions.

As shown in Fig. 5, discrepancies in metabolite concentra-

tion between measured and calculated values were sufficiently

small. Therefore, the model successfully reproduced the experi-
mental results. Fig. 5 also shows glucose time series estimated

data without consideration of Glk inactivation. When Glk

inactivation was not incorporated into the calculation, the glu-

cose disappeared too rapidly (ca. 8 min), indicating that the

use of Glk inactivation effectively reduced error in the glucose

time series estimation.

For PfkA, more complex rate equations than Eq. (3) have

been reported. One of the most elaborate mechanistic models

is the Monod–Wyman–Changeux model (MWC model) [22]

that explains cooperative behavior of an allosteric enzyme.

Blangy et al. applied the MWC model to E. coli Pfk and deter-

mined some parameters experimentally [23]. In the results of

Blangy et al., the Hill’s n, Km,F6P and Vmax varied under differ-

ent concentrations of ADP [23]. In our study, although values

for Hill’s n, Km,F6P and Vmax were fixed for PfkA, the time

series of substrate (F6P) and product (FDP) for PfkA were

successfully reproduced by the model (Fig. 5). This could be

predicted, because the increase in ADP causes both activation

and inhibition of Pfk activity [23], and so calculations using the

fixed parameters accurately approximated the reaction rate

change resulting from the mixed effect of activation and inhibi-

tion. This may not be true in systems that have a wider range

of metabolite concentrations, therefore application of the

MWC equation should be considered for precise and predic-

tive simulations.

3.4. Comparison of parameters determined by the initial velocity

method for individual enzymes and by tuning with metabolite

concentration time series data

In most dynamic models of metabolism designed to repro-

duce actual experimental data (from both in vivo and

in vitro systems), parameter tuning with metabolite concentra-

tion time series data has been performed. We also estimated

the rate equation parameters in our test system using a popular

tuning procedure. As described in Section 2.9, two different

tuning methods were used; one optimized with the constraint



Table 3
Inactivation rate equation parameters for Glk

Method Inactivation experiment Tuning using metabolite
concentration time series
data, with a constrainta

Tuning using metabolite
concentration time series
data, without constraint

Parameter Value

kGlk,inactivation 0.29 min�1 0.46 min�1 0.16 min�1

Keq,Glk,inactivation 2.72 57.6 �2.98

aParameters should be non-negative.
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of non-negative parameter values, and the other with no con-

straints. Tables 2 and 3 show the parameters determined by

tuning with metabolite concentration time series data.

Fig. 6A and B shows the metabolite concentration time series

calculated with tuned parameters. The simulations using

parameters obtained by tuning with time series data repro-
0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
Time (min)

C
on

ce
nt

ra
tio

n 
(m

M
)

0.0

0.2

0.4

0.6

0.8

1.0

0 2 4 6 8 10
Time (min)

C
on

ce
nt

ra
tio

n 
(m

M
)

A

B

Fig. 6. Comparison of calculated and experimental values of the
metabolite concentration time series. Calculations were performed
with parameters obtained by tuning with the metabolite concentration
time series data. (A) Parameter tuning performed with the constraint
that parameters be non-negative. (B) Parameter tuning performed with
no constraint. Blue circles represent glucose (experimental); blue line
represents glucose (calculated with consideration of Glk inactivation);
red triangles represent G6P (experimental); red line represents G6P
(calculated); green squares represent F6P (experimental); green line
indicates F6P (calculated); magenta rhombus indicates FDP (experi-
mental); magenta line represents FDP (calculated).
duced the metabolite concentration measurements very well

(Fig. 6A and B). However, as shown in Tables 2 and 3, the

tuned parameters differed significantly from the values deter-

mined in the kinetic analysis for the individual enzymes, indi-

cating that use of the tuned parameters is limited to

reproduction of the data set employed for the tuning. More-

over, in results obtained from optimization with no parameter

constraints, some negative parameters were included. For

equilibrium constants or parameters that have the dimension

of concentration (mM), such negative values have no physico-

chemical meaning.
4. Discussion

Some pioneering experiments were performed to reconstruct

a metabolic pathway in an in vitro system. Scopes studied an

artificial glycolytic system reconstituted from purified rabbit

and pig muscle glycolytic enzymes [24,25]. Itoh et al. also

tested an in vitro glycolytic system consisting of purified

E. coli enzymes [26]. Cuebas and Schulz reconstituted a b-oxi-

dation system using purified pig heart and beef liver enzymes

[27]. These reports provided significant insights into the regu-

lation mechanism of metabolic systems, but included no simu-

lation study. Simultaneously, development of dynamic models

that explain the behavior of metabolites in an in vivo system,

cell extracts, or an in vitro reconstituted metabolic system have

been attempted. Lambeth et al. succeeded in reproducing the

dynamic data of phosphocreatine and inorganic phosphate in

mouse hind limb muscle measured by nuclear magnetic reso-

nance (NMR) using the glycogenolysis model based on the lit-

erature in vitro parameters [28]. Vinnakota et al. augmented

the model of Lambeth et al. [28] to deal with pH changes

and resulting enzymatic activity alterations [29]. Rizzi et al.

constructed a model of yeast carbon metabolism that repro-

duces time series metabolite data after glucose pulse injection

to the culture broth [6]. A model for E. coli [7] was created

using the strategy proposed by Rizzi et al. [6]. Chassagnole

et al. built a model of threonine synthesis in E. coli cell extracts

[5]. Curien et al. constructed two in vitro systems to validate

their kinetic model of methionine and threonine biosynthesis

with purified enzymes [30]. All of these models included

parameter tuning processes to fit calculated values with time

series data of metabolite concentrations or the metabolic flux

of the modeled system. However, as shown in Tables 2 and

3, the generalization capability and physicochemical and/or

physiological meaning of the parameters may be lost through

such tuning manipulations.

Fievet et al. reconstituted a portion of glycolysis using puri-

fied enzymes and proposed a non-mechanistic model of the sys-

tem [10]. Their model included no classical kinetic constants for
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individual enzymes. This non-mechanistic approach simplifies

identification of model parameters and is sufficient to estimate

overall metabolic flux through the modeled system. However,

regulatory functions of individual enzymes in a metabolic sys-

tem cannot be analyzed by such non-mechanistic models.

Fig. 5 shows that, when accurate kinetic parameters are pro-

vided, a physical/mechanistic model can simulate the behavior

of a real multi-enzyme system without tuning using particular

metabolite concentration time series data. These results indi-

cate a generalized living cell metabolic model can be built using

parameters determined in an environment that mimics an

in vivo system. For this purpose, not only basic physical prop-

erties such as temperature and pH, but also other factors that

affect enzymatic reactions such as chemical species (containing

other proteins that interact with the modeled enzyme), ion

strength [31,32], redox balance [33], dimension restriction

[34,35], and macromolecular crowding [36–39], may be consid-

ered for the in vitro enzyme kinetic analysis method. For

example, macromolecular crowding can be reproduced by

addition of a polymer such as polyethylene glycol [39] or a

globular protein such as hemoglobin [38]. To reconstruct the

natural environment for a membrane-bound or a trans-mem-

brane enzyme is very difficult. However, efforts to construct

the artificial structure for determining realistic kinetic parame-

ters of membrane proteins continue. Marchal et al. reported a

hemi-bilayer membrane system to measure the two-dimen-

sional kinetic parameters of a membrane enzyme, E. coli pyru-

vate oxidase [40]. Since their system is not a complete double

layer system, trans-membrane enzymes cannot be incorpo-

rated. Wong et al. attempted to reproduce more realistic cellu-

lar membrane structures for investigations of trans-membrane

proteins, and developed techniques to make new phospholipid

bilayer systems [41]. Their bilayer systems are supported on a

soft polymer cushion and exhibit more natural fluidity than the

previous solid-supported membrane systems. Application of

these bilayer systems for evaluation of properties of trans-

membrane enzymes remains a challenge.

For chemical species that affect enzyme activities, some

important factors may be lost during preparation of an enzyme

or an isolated organelle. For instance, Korzeniewski indicated

some calmodulin analogous proteins work with calcium ions

to activate enzymes in a mitochondrial oxidative phosphoryla-

tion system, and these proteins are lost or inactivated during

mitochondria preparation [42]. One solution for this problem

is the use of an in situ system. Permeabilized cell techniques

[43] allow researchers to handle concentrations of specific

metabolites in cells while maintaining an intact cytoplasmic

environment. Yoshino et al. used permeabilized cells to study

the role of AMP deaminase in yeast [44]. The yeast AMP

deaminase is deactivated during the purification processes

[45], and no method to avoid this degradation has been found.

Accordingly, the permeabilized cell method is efficient for

determining the true kinetics of the yeast AMP deaminase.

Saks et al. summarized the applications of permeabilized cell

methods for analysis of mitochondrial function, including

respiratory kinetic characteristics [46]. As shown in these stud-

ies, permeabilized cell techniques are powerful methods to

investigate enzyme kinetics under natural cellular conditions.

However, small molecules may be lost from permeabilized

cells, and for cells that have a thick cell wall, strong detergent

for permeabilization must be applied, so an intact state is not

always maintained.
Even if in vivo kinetics of an enzyme could be successfully

captured by these in situ systems, determining the factors that

influence activity is required for more detailed modeling. This

is not an easy task, but recent progress in metabolomics [47]

and proteomics [48] may contribute to discovering trace ele-

ments that affect to target enzyme activity. Soga et al. devel-

oped capillary electrophoresis mass spectrometry (CE-MS)

for metabolome analysis, which permitted detection of 1692

metabolites from Bacillus subtilis extracts [49]. Saito et al.

applied CE-MS to identify substrates and products of YbhA

and YbiV, which were uncharacterized proteins in E. coli

[50]. de Godoy et al. used reversed-phase nano-scale liquid

chromatography (LC) coupled to tandem mass spectrometry

(MS/MS) for proteome analysis of yeast, and 2003 proteins

were identified in a single experiment [51]. Performance of

equipment for metabolomics and proteomics are being steadily

improved, allowing detection and quantification of smaller

amounts of metabolites and proteins. Currently, however, effi-

cient sample preparation, including rapid quenching of metab-

olism and good recovery extraction, strongly depend on

empirical rules.

Each technique outlined includes specific limitations or is

still under development. Thus, further improvements in these

techniques and the development of novel techniques to obtain

kinetic parameter values that approximate in vivo systems are

essential for future dynamic simulations of metabolism. As

stressed repeatedly, creating such cell mimic systems is not

straightforward; however, we believe our study provides a

foundation for the efforts to develop such systems.
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