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Abstract 

Background: Microbial production of biofuels and biochemicals from renewable feedstocks has received consider-
able recent attention from environmental protection and energy production perspectives. Many biofuels and bio-
chemicals are produced by fermentation under oxygen-limited conditions following initiation of aerobic cultivation 
to enhance the cell growth rate. Thus, it is of significant interest to investigate the effect of dissolved oxygen concen-
tration on redox regulation in Escherichia coli, a particularly popular cellular factory due to its high growth rate and 
well-characterized physiology. For this, the systems biology approach such as modeling is powerful for the analysis of 
the metabolism and for the design of microbial cellular factories.

Results: Here, we developed a kinetic model that describes the dynamics of fermentation by taking into account 
transcription factors such as ArcA/B and Fnr, respiratory chain reactions and fermentative pathways, and catabolite 
regulation. The hallmark of the kinetic model is its ability to predict the dynamics of metabolism at different dissolved 
oxygen levels and facilitate the rational design of cultivation methods. The kinetic model was verified based on the 
experimental data for a wild-type E. coli strain. The model reasonably predicted the metabolic characteristics and 
molecular mechanisms of fnr and arcA gene-knockout mutants. Moreover, an aerobic–microaerobic dual-phase culti-
vation method for lactate production in a pfl-knockout mutant exhibited promising yield and productivity.

Conclusions: It is quite important to understand metabolic regulation mechanisms from both scientific and engi-
neering points of view. In particular, redox regulation in response to oxygen limitation is critically important in the 
practical production of biofuel and biochemical compounds. The developed model can thus be used as a platform for 
designing microbial factories to produce a variety of biofuels and biochemicals.

Keywords: Kinetic modeling, Fermentation, Dissolved oxygen limitation, Redox regulation, ArcA, Fnr, Respiratory 
chain, NADH/NAD+ ratio, Escherichia coli
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Background
Microbial production of biofuels and biochemicals from 
renewable feedstocks has received considerable recent 
attention from environmental protection and energy pro-
duction perspectives. A limited number of cell factory 
platforms have been employed for the industrial produc-
tion of a wide range of fuels and chemicals. Escherichia 
coli is probably the most widely used cellular factory due 

to its high growth rate and well-characterized physiol-
ogy [1]. Many biofuels and biochemicals, such as ethanol 
and lactate, are produced by fermentation under oxygen-
limited conditions. One method in particular, dual-phase 
cultivation method, combines the advantages afforded by 
aerobic and micro-aerobic (or anaerobic) conditions [2, 
3]. In dual-phase processes, cultivation is initiated with 
an aerobic culture to increase the biomass (contributing 
to productivity), and it is followed by anaerobic or micro-
aerobic cultivation to facilitate efficient production of the 
target product. It is, therefore, highly desirable to evalu-
ate the metabolic characteristics at different dissolved 
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oxygen (DO) concentrations. For this purpose, appropri-
ate quantitative models that can simulate such cultiva-
tions are needed.

Of the various modeling approaches currently avail-
able to cellular metabolism, flux balance analysis (FBA) 
approach has been extensively employed, but restricts to 
stoichiometric equations at the steady state, and thus it 
is difficult to simulate the dynamic changes in metabolic 
fluxes. On the other hand, a kinetic modeling approach 
can reproduce the dynamics of metabolite concentrations 
and fluxes in response to changes in genetic and environ-
mental conditions [4], because it takes into account the 
mechanism of complex reactions such as allosteric mod-
ulation [5, 6], enzyme modification [7], and gene expres-
sion regulation by transcription factors (TFs) [8–11].

Of the various types of metabolic regulation, carbon 
catabolite regulation has been extensively modeled by a 
number of researchers [7, 12–19] to elucidate the mech-
anism of carbon uptake and metabolism. A detailed 
kinetic model of central carbon metabolism in E. coli 
that incorporates a constrained optimization method for 
parameter estimation on a supercomputer was recently 
developed [20]. As compared with other kinetic mod-
els, this model enabled more accurate prediction of the 
dynamics of wild-type (WT) cells and multiple-gene-
knockout mutants in batch culture. However, from the 
perspective of practical applications to develop cellular 
factories for biofuel and biochemical production, the 
effect of oxygen limitation on redox regulation with car-
bon catabolite regulation is critically important. Con-
siderable effort has been expended in this regard in the 
Systems Understanding of Microbial Oxygen Metabolism 
(SUMO) project [21–27].

For the proper modeling on the respiratory chain and 
the redox regulation, we have to consider the basic regu-
lation mechanisms. Oxygen serves as the final electron 
acceptor of the respiratory chain [28]. In E. coli, two 
major oxidases, cytochrome bo (Cyo) and cytochrome 
bd (Cyd), transfer electrons from quinol to oxygen [29, 
30]. Cyo has a low affinity for oxygen but a high reaction 
rate and functions primarily under aerobic conditions. 
By contrast, Cyd has high oxygen affinity but a lower 
reaction rate and functions primarily under micro-aer-
obic conditions. On the other hand, the dehydrogenases 
NADH dehydrogenase-I (Nuo) and NADH dehydroge-
nase-II (Ndh) oxidize electron donors such as NADH and 
 FADH2 by reducing quinone to quinol [30]. The func-
tion of the respiratory chain is the successive transport 
of electrons from electron donors to electron acceptors 
with translocation of protons from the cytoplasm to the 
periplasmic space via the inner membrane. The result-
ing proton gradient (proton motive force) drives ATP 

synthesis. This series of reactions proceeds when oxy-
gen is available, such as under aerobic or micro-aerobic 
conditions.

At limited oxygen concentrations, the transcription 
factors Fnr and ArcA/B play essential roles in metabolic 
regulation in E. coli [21]. The direct oxygen sensor Fnr 
regulates the expression of metabolic pathway genes 
under anaerobic conditions [31], whereas ArcA/B regu-
lates these genes under both micro-aerobic and anaerobic 
conditions [32, 33]. The ArcA/B system is a two-compo-
nent system: ArcB is a membrane-bound sensor kinase 
and ArcA is the cognate response regulator. ArcB auto-
phosphorylates, and then trans-phosphorylates ArcA 
when oxygen is limited [34]. Phosphorylated ArcA in 
turn either activates or represses the expression of meta-
bolic pathway genes. In addition, phosphorylated ArcA 
represses cyoABCD, which encodes Cyo, and activates 
cydAB, which encodes Cyd in the respiratory chain. Note 
that quinone inhibits the auto-phosphorylation of ArcB 
[35], which in turn represses the activity of ArcA.

The redox ratio (i.e., NADH/NAD+) increases as the 
activity of the respiratory chain decreases in response 
to oxygen limitation. The excretion rates of fermenta-
tion products such as lactate, ethanol, succinate, for-
mate  (CO2 and  H2 also), and acetate are influenced by 
this redox ratio. NADH is reoxidized to generate  NAD+ 
via these fermentative pathways to enable continua-
tion of metabolism under micro-aerobic and anaerobic 
conditions. Lactate is formed by lactate dehydrogenase 
(LDH), whereas ethanol is formed by acetaldehyde dehy-
drogenase (ALDH) and alcohol dehydrogenase (ADH). 
Succinate is formed from phosphoenol pyruvate (PEP) 
via phosphoenolpyruvate carboxylase (Ppc) through the 
reverse pathway of the normal tricarboxylic acid (TCA) 
cycle from oxaloacetate to succinate, whereas the suc-
cinate dehydrogenase (SDH) pathway is reversed by 
fumarate reductase (Frd). Formate is formed by pyruvate 
formate-lyase (Pfl), and acetate is formed by phosphoa-
cetyl transferase (Pta) and acetate kinase (Ack).

In the present study, we developed a kinetic model that 
describes the dynamics of the metabolism in response 
to different DO levels by taking into account the roles of 
transcription factors such as ArcA/B and Fnr, the respira-
tory chain reactions, the fermentative pathways as men-
tioned above, as well as catabolite regulation.

Methods
Modeling primary metabolism
Figure  1 shows the primary metabolic pathways of E. 
coli, including glycolysis, TCA cycle, pentose phosphate 
(PP), gluconeogenic, glyoxylate, and anaplerotic path-
ways, as well as the substrate transport system such as 
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phosphotransferase system (PTS). Kinetic models of 
these pathways have been developed to investigate car-
bon uptake and metabolism under aerobic conditions 
[13–15, 17, 20]. Here, we constructed a kinetic model 
applicable under micro-aerobic (and anaerobic) con-
ditions as well. For this purpose, the model incorpo-
rates additional fermentative pathways including such 
enzymes as LDH, Pfl, and ADH. We also considered res-
piratory chain mediators such as Nuo, Ndh, Cyo, and Cyd 
and redox regulation by Fnr and ArcA/B in response to 
changes in DO level. The detailed mass balance equations 
and the kinetic models are given in Additional file 1.

Once the overall metabolic fluxes of primary metabo-
lism are calculated, the specific ATP, specific  CO2, and 
specific NAD(P)H production rates can be estimated. 
ATP is produced via either substrate-level phosphoryla-
tion or oxidative phosphorylation. Referring to Fig. 1, the 
specific ATP production rate can be expressed as follows:

(1)

vATP = OP+ vL_Emp + vPyk + vPTACK + vαKGDH

− vGlk − vPfk − vPps − vPck − vAcs.

Note that L_Emp is the lumped pathway from glyc-
eraldehyde-3-phosphate/dihydroxy acetone phosphate 
(GAP/DHAP) to PEP, and PTACK is the combined path-
way for Pta and Ack (Fig. 1). In Eq. 1, OP represents the 
specific ATP production rate via oxidative phosphoryla-
tion, which can be estimated by introducing the  H+/ATP 
ratio, which indicates the ratio of proton transport-cou-
pled ATP synthesis, where  H+/ATP =  3 [36], and cal-
culating the proton transfer rate via Nuo, Cyo, and Cyd 
reactions, such that

where the proton transfer efficiency, which is indicated as 
the number of protons delivered to the periplasmic side 
of the membrane per electron  (H+/e− ratio), is taken into 
account for each enzyme. The  H+/e− ratios for Nuo, Cyo, 
and Cyd can be estimated as 2, 2, and 1, respectively [28]. 
Note that NADH, which carries two electrons, is oxidized 
by dehydrogenases, and the electrons are subsequently 
transferred to cytochromes with subsequent conversion 
of oxygen to  H2O.

(2)OP =
1

3

(

4 · vNuo + 4 · vCyo + 2 · vCyd
)

,

a b

Fig. 1 Metabolic network and transcriptional regulation in Escherichia coli. Primary metabolic pathways (a) and gene regulation (b)
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The specific growth rate (μ) was estimated based on the 
experimental observation that cell growth and specific 
ATP production rates are linearly correlated [13, 37, 38]:

where kATP represents the constant parameter, and vATP 
represents the specific ATP production rate computed 
using Eq. 1.

The specific  CO2 production rate can be estimated by

the specific NADPH production rate can be estimated by

and the specific production/consumption rates of NADH 
can be estimated by

To properly model primary metabolism, the metabolic 
regulation mechanisms must be incorporated. Enzyme-
level regulation can be represented by incorporating the 
effectors (metabolites) into the corresponding kinetic 
models. For example, in E. coli, fructose-1,6-bisphos-
phate (FBP) is the feed-forward activator of pyruvate 
kinase (Pyk) and Ppc, whereas PEP is the feedback inhibi-
tor of phosphofructokinase (Pfk). These effectors were 
incorporated in the corresponding kinetic models (Addi-
tional file 1).

Transcriptional regulation is also important and can be 
represented by the TFs, such that

where  TFi represents the activity of the ith transcription 
factor, and v∙

max′ represents the original maximum reac-
tion rate for the corresponding pathway reaction. The 
detailed equations are given in Additional file 1.

In the redox regulation, Fnr and ArcA play important 
oxygen-dependent roles, with the activities of such TFs 
governed by cytoplasmic oxygen concentration [O2] and 
oxygenated quinone (after this, simply quinone) concen-
tration [Q], respectively. The activities of Fnr and ArcA 
can be expressed as Hill equation [39] as follows:

where KFnr and KArcA are the affinity constants and n is 
the negative Hill coefficient, and [O2] was defined by

(3)µ = kATP · vATP,

(4)
νCO2 = vPGDH + vPDH + vICDH + vαKGDH

+ vMez + vPck − vPpc,

(5)νNADPH = vG6PDH + vPGDH + vICDH + vMez,

(6)
vNADH = vL_Emp + vPDH + vαKGDH + vMDH

− vLDH − vALDH − vADH − vNuo − vNdh.

(7)vmax
· = vmax′

· · f (TFi),

(8)TFFnr =
[O2]

n

[O2]
n + Kn

Fnr

,

(9)TFArcA =
[Q]n

[Q]n + Kn
ArcA

,

(10)[O2] = kO2 [DO2],

where  [DO2] is the dissolved oxygen concentration in the 
culture medium and kO2 is the model parameter. Based 
on the experimental observation using biosensor [40], we 
assumed that [O2] is lower than  [DO2]. Figure  1 shows 
the effects of TFs on the primary metabolic pathways 
included in the present model. A “+” sign represents 
the case in which the transcription factor activates gene 
expression, whereas a “−” sign represents the case in 
which the TF represses gene expression. The gene name 
is written in brackets, where npts denotes the gene that 
codes for glucose transporters other than glucose-PTS, 
and L_emp denotes a hypothetical gene that codes for the 
lumped reactions through glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), phosphoglucokinase (Pgk), 
phosphoglucomutase (Pgm), and enolase (Eno). The DO 
concentration in the culture medium  [DO2] was scaled 
from 0 to 100% and was defined as follows:

where  [DO2]* represents the saturated DO concentra-
tion at 37 °C. Thus, 0 and 100% DO levels represent the 
absence of oxygen (anaerobic condition) and DO satura-
tion at 37 °C, respectively.

Model identification
Model parameters were adjusted so that the model can 
reproduce the experimental behavior of WT strain in 
the batch cultures under both micro-aerobic and aerobic 
conditions [41, 42], whereas other parameters, includ-
ing the Michaelis–Menten and dissociation constants, 
were retained as those given in the references (Additional 
file  2). MATLAB (MathWorks) was used for all simula-
tions. The ode15s was adopted as an ordinary differential 
equation solver.

Results
Experimental verification of the kinetic model
To verify the appropriateness of the kinetic model, the 
simulated extracellular concentrations of fermentation 
products were compared with the experimental data 
obtained from batch cultures under micro-aerobic (DO 
level = 1%) and aerobic (DO level = 40%) conditions [41, 
42], as shown in Fig. 2. The concentrations of acetate, lac-
tate, formate, ethanol, and succinate in the batch culture 
of the WT strain were plotted at the time points at which 
10 g/l (micro-aerobic) and 4 g/l (aerobic) of glucose were 
depleted. The model reproduced most of the experimen-
tal product concentration under both micro-aerobic and 
aerobic conditions (Fig. 2). In addition, the model almost 
reproduced the experimental time courses of the WT 
strain under micro-aerobic (DO level = 9%) and aerobic 
conditions [43, 44], as shown in Additional file 3: Figure 

(11)DO [%] ≡
[DO2]

[DO2]∗
× 100,
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S1. The correlation coefficient between the measured 
[41–44] and simulated metabolite concentrations was 
0.98 (p < 0.05), as shown in Additional file 3: Figure S2.

Effect of DO level on the metabolic characteristics in the 
WT strain
Figure 3a shows the simulation result for a batch culture 
of the WT strain, in which the concentrations of acetate, 
lactate, formate, ethanol, and succinate were simulated at 
the time point at which 10  g/l of glucose was depleted. 
Acetate was the primary product at DO levels >15%. This 
acetate overflow was observed together with high  CO2 
production at a high growth rate in E. coli [45, 46], as 
shown in Additional file 3: Figure S3. The acetate concen-
tration increased with decrease in the DO level (3–14%), 
as observed experimentally [24]. As the DO level 
decreased, the formate, ethanol, and succinate concen-
trations increased; the lactate concentration increased 
and then steeply decreased below 5% of DO level. At DO 
levels <2%, the lactate concentration was lower than that 
of the other products as experimentally observed [42, 47].

Changes in the metabolism of the WT strain with respect 
to DO level
As shown in Fig.  3b, the changes in the concentrations 
of intracellular metabolites and fluxes were simulated 
with respect to DO level in the WT strain. The meta-
bolic characteristics were evaluated by classifying the 
DO level into four categories: (I) anaerobic condition 
(DO =  0%) in which both Fnr and ArcA are active; (II) 
micro-aerobic conditions (0% < DO < 7%) in which both 
Fnr and ArcA are active; (III) micro-aerobic conditions 

(7% ≤ DO < 20%) in which ArcA is primarily active and 
Fnr is inactive; and (IV) aerobic conditions (DO ≥ 20%) 
in which neither Fnr nor ArcA is active.  TFFnr and  TFArcA 
in Fig.  3b were calculated by Eqs.  8 and 9, respectively. 
The change in the typical carbon metabolism is illus-
trated for these categories in Additional file 3: Figure S4.

The specific oxygen uptake rate (qOUR), which indi-
cates the rate of oxygen consumption via Cyo and 
Cyd reactions, was simulated to be high under condi-
tion IV, whereas it decreased under conditions III, II, 
and I (Fig. 3b). As the DO level decreased, the Cyd flux 
increased and then decreased at <7% DO. This up and 
down behavior can be attributed to the activation of Cyd 
synthesis by ArcA under condition III, whereas Cyd syn-
thesis was repressed by Fnr under conditions I and II 
(Fig. 1). The Cyo flux was simulated to be higher than the 
Cyd flux under condition IV, whereas the Cyd flux was 
more dominant than the Cyo flux under condition II. 
These simulation results are supported by the experimen-
tal fact that the affinity of Cyd to oxygen is higher than 
that of Cyo [29]. Since quinone is produced by Cyo and 
Cyd, quinone decreases with a decrease in DO level. This 
phosphorylates ArcB and then ArcA, resulting in the 
increase in the ArcA activity under conditions I, II, and 
III.

Among the enzymes associated with consumption of 
pyruvate, Pfl, pyruvate dehydrogenase (PDH), and LDH, 
play critical roles in determining the metabolite forma-
tion pattern. As the DO level decreased, the Pfl flux was 
simulated to increase under condition III because ArcA 
activated the Pfl reaction (Fig.  1). The Pfl flux was fur-
ther enhanced by Fnr and ArcA under conditions I and 

a b

ACE
LA

C
FOR

ETH
SUC

0

2

4

6

8
C

on
ce

nt
ra

tio
n 

[g
/l]

Experiment
Simulation

ACE
LA

C
FOR

ETH
SUC

0

0.2

0.4

0.6

0.8

1

C
on

ce
nt

ra
tio

n 
[g

/l]

Experiment
Simulation
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II. In contrast, as the DO level decreased, the PDH flux 
decreased under condition III because ArcA represses 
the aceE/F genes that encode PDH (Fig. 1). The Pfl and 
PDH fluxes were both active under condition III, which 
was consistent with the experimental data [48]. The LDH 
flux exhibited an up and down behavior with respect 
to DO level. As the DO level decreased, the LDH flux 
increased under condition III, whereas it declined steeply 
under condition II.

The NADH/NAD+ ratio increased steeply with 
decreasing DO level under conditions I and II because 
NADH is hard to be consumed by the NADH dehydro-
genases in the respiratory chain. This simulation result 
was consistent with the experimental data [49]. A high 
NADH/NAD+ ratio promoted the ADH reaction, which 
resulted in enhanced ethanol production under condi-
tions I and II. Since Fnr activates the Frd flux (Fig.  1), 
succinate production was enhanced under conditions I 
and II.

To obtain a better understanding of the mechanisms 
by which ATP and NADH are produced or consumed 
under the categorized DO conditions examined, the 
specific production/consumption rates of ATP and 
NADH were simulated, as illustrated in Fig.  3c, d. DO 
levels of 0, 3, 8, and 40% were selected as the represent-
atives of conditions I, II, III, and IV, respectively. The 
specific ATP production rate decreased in the order of 
conditions IV, III, II, and I (Fig.  3c). Additional file  3: 
Figure S5 indicates the relationship between the spe-
cific ATP production rate and the specific growth rate. 
Once the specific ATP production rate was calculated 
by Eq. 1, the specific growth rate was estimated by Eq. 3. 
This linear relationship between the specific ATP pro-
duction rate and the specific growth rate held not only 
under aerobic conditions but also under micro-aerobic 
and anaerobic conditions with a correlation coefficient 
of 0.92 (p  <  0.05), as experimentally observed [25, 37, 
38, 41, 42, 47].

The DO level affected the specific ATP production rate 
(Fig.  3c). ATP was primarily synthesized by respiration 
under condition IV. By contrast, substrate-level phos-
phorylation by glycolysis and acetate formation became 
dominant under conditions I and II. NADH was con-
sumed by the NADH dehydrogenases (Nuo and Ndh) 
in the respiratory chain under condition IV, whereas 
NADH was primarily consumed by ethanol formation 
under conditions I and II (Fig. 3d). This simulation result 
demonstrates that the ADH flux increased under condi-
tions I and II due to a high NADH/NAD+ ratio (Fig. 3b). 
In fact, it was experimentally shown that ethanol is pro-
duced under micro-aerobic and anaerobic conditions [42, 
47, 50]. The reaction of reductive TCA arm via malate 
dehydrogenase (MDH) consumed NADH under condi-
tions I and II (Fig.  3d). The resultant fumarate/malate 
were supplied as the substrates for the reaction of Fnr-
activated Frd (Fig. 3b), producing succinate (Fig. 3a). This 
simulation result was consistent with the experimental 
observation [47, 50]. NADH was produced by glycolysis, 
the PDH reaction, and the TCA cycle under condition 
IV (Fig. 3d), whereas NADH production by the PDH flux 
and TCA cycle declined significantly under conditions 
I and II because ArcA represses the PDH flux and both 
ArcA and Fnr repress the TCA cycle.

Additional file  3: Figure S3A shows the carbon bal-
ances of the extracellular products,  CO2, and biomass 
at different DO levels (conditions I, II, III, and IV) in the 
WT strain. The metabolic modes changed significantly 
depending on DO level. Most of glucose was converted 
to biomass,  CO2, and acetate under condition IV. On the 
other hand, biomass and  CO2 production were decreased 
under condition I.

Prediction of the metabolic characteristics of an 
fnr‑knockout mutant
As Fnr and ArcA play critical roles in redox regulation 
at low DO levels, it is of interest to predict the effect of 

(See figure on previous page.) 
Fig. 3 Simulation results of the metabolic changes with respect to DO level in wild-type E. coli. The changes in the metabolic (fermentation) 
products (a), and the activities of transcription factors, intracellular metabolites, and fluxes (b) with respect to DO level. The specific ATP produc-
tion rate (c) and specific NADH production/consumption rates (d) are shown for the DO levels of 0, 3, 8, and 40% of air saturation, representatives 
of conditions I, II, III, and IV, respectively, where (I) anaerobic condition (DO = 0%); (II) micro-aerobic conditions under which both Fnr and ArcA are 
active; (III) micro-aerobic conditions under which ArcA is primarily active; and (IV) aerobic conditions under which neither Fnr nor ArcA is active. The 
simulation results show the product concentrations at the time point at which 10 g/l of glucose was depleted in a batch culture

(See figure on next page.) 
Fig. 4 Simulation results of the metabolic changes with respect to DO level in fnr-knockout mutant. The changes in the metabolic (fermentation) 
products (a), and the activities of transcription factors, intracellular metabolites, and fluxes (b) with respect to DO level. The specific ATP produc-
tion rate (c) and specific NADH production/consumption rates (d) are shown for the DO levels of 0, 3, 8, and 40% of air saturation, representatives 
of conditions I, II, III, and IV, respectively. The simulation results show the product concentrations at the time point at which 10 g/l of glucose was 
depleted in a batch culture
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fnr or arcA gene knockout on the primary metabolism. 
Figure 4a shows the simulation results of an fnr-knockout 
mutant, in which the concentrations of acetate, lactate, 
formate, ethanol, and succinate were simulated at the 
time point at which 10  g/l of glucose was depleted. As 
compared to the WT strain (Fig. 3a), succinate was rarely 
produced at any DO level due to little activity of Frd 
caused by a lack of Fnr. As DO level decreased, lactate 
increased, peaking at 3% DO, and then slightly decreased. 
The lactate production in the fnr-knockout mutant was 
more enhanced than the WT strain at very low DO lev-
els, which was supported by the experimental data [51].

Figure 4b shows the effect of DO level on the intracel-
lular metabolic fluxes, redox status, and transcriptional 
activities. The Pfl flux was predicted to be lower in the 
fnr-knockout mutant than in the WT strain (Fig.  3b) 
under conditions I and II. The LDH flux increased under 
condition III and slightly decreased under conditions I 
and II in the fnr-knockout mutant, but it was higher than 
that of the WT strain (Fig. 3b). As the DO decreased, the 
NADH/NAD+ ratio increased under conditions III, II, 
and I, which resulted in the increased ADH flux, while 
the Frd flux was zero due to a lack of Fnr.

The simulated specific production/consumption rates 
of ATP and NADH are shown in Fig. 4c, d. The profiles 
of the specific ATP production rates of the fnr-knockout 
mutant were almost the same as those of the WT strain 
(Fig.  3c), whereas the specific NADH consumption rate 
in the lactate and ethanol formation through LDH and 
ADH and the respiratory pathway somewhat differed 
from that of the WT strain under condition I (Figs.  3d, 
4d). The NADH consumption rate through LDH in the 
fnr-knockout mutant was higher than that of the WT 
strain (as discussed later), whereas the NADH consump-
tion rate through ADH was lower than that of the WT 
strain. As compared with the WT strain, the NADH 
consumption rate by the NADH dehydrogenases in the 
respiratory chain increased under condition II because 
the lack of Fnr de-repressed the NADH dehydrogenase 
reactions.

Additional file 3: Figure S3B shows the carbon balances 
of the metabolic products including  CO2 and biomass in 
the fnr-knockout mutant at different DO levels. The car-
bon balances differed between the WT strain and the fnr-
knockout mutant under conditions I and II (Additional 
file 3: Figure S3A, B). More glucose carbon was converted 
into lactate in the fnr-knockout mutant than in the WT 
strain.

Prediction of the metabolic characteristics of an 
arcA‑knockout mutant
As shown in Fig.  5a, the model predicted the changes 
in metabolic products with respect to DO level in an 

arcA-knockout mutant. Acetate production decreased 
slightly from 10 to 2% DO, as experimentally observed 
[52]. Ethanol production was predicted to be higher in 
the arcA-knockout mutant than in the WT strain and fnr-
knockout mutant at DO <6%, which was consistent with 
the experimental data under micro-aerobic conditions 
[53, 54]. Under anaerobic condition, ethanol production 
was also predicted to be higher in the arcA-knockout 
mutant than in the other strains, while the ethanol pro-
duction in the arcA-knockout mutant was reduced in the 
experiment [53]. This discrepancy will be discussed later. 
As the DO level decreased, lactate increased, peaking 
at 4% DO, and then decreased (Fig.  5a). The maximum 
concentration of lactate produced by the arcA-knockout 
mutant was higher than those of the WT strain and fnr-
knockout mutant, as experimentally observed [53].

Figure 5b shows the effect of the DO level on the intra-
cellular metabolic fluxes, redox status, and transcriptional 
activities. The Cyd flux was lower than that of the WT 
strain under conditions III and II (Figs. 3b, 5b), as experi-
mentally observed [55]. As the DO level decreased under 
conditions III and II, the PDH flux slightly decreased. The 
decrease in the PDH flux was small compared to that of 
the WT strain and the fnr-knockout mutant (Figs.  3b, 
4b, 5b) because the PDH flux is not repressed in the 
arcA-knockout mutant. The NADH/NAD+ ratio in the 
arcA-knockout mutant was higher than that of the WT 
strain and the fnr-knockout mutant under condition II 
(Figs. 3b, 4b, 5b), as experimentally observed [53]. As DO 
level decreased, the NADH/NAD+ ratio increased and 
then declined slightly as experimentally observed [53]. 
The simulated NADH/NAD+ ratio of the arcA-knockout 
mutant was higher than its experimental ratio, although 
the simulated NADH/NAD+ ratios of the WT strain 
and the fnr-knockout mutant were relatively consistent 
with their experimental ratios. While the activities of the 
PDH, citrate synthase (CS), and isocitrate dehydrogenase 
(ICDH) enzymes are allosterically inhibited by NADH 
to suppress an excess production of NADH [56, 57], the 
present model did not implement such allosteric inhibi-
tions. The neglect of the allosteric inhibitions relatively 
reproduced the NADH/NAD+ ratios of the WT strain 
and the fnr-knockout mutant because their NADH level 
was not so high as that of the arcA-knockout mutant, but 
would overestimate the NADH/NAD+ ratio of the arcA-
knockout mutant. As the DO level decreased, the Frd flux 
steeply increased and then declined (Fig. 5b). The simula-
tion result of the Frd flux showed the similar trend as that 
of the NADH/NAD+ ratio due to the fact that NADH is 
oxidized at MDH with Frd.

The specific production/consumption rates of ATP and 
NADH were simulated as shown in Fig. 5c, d. The specific 
ATP production rate increased in the arcA-knockout 
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Fig. 5 Simulation results of the metabolic changes with respect to DO level in arcA-knockout mutant. The changes in the metabolic (fermentation) 
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mutant under condition III as compared with the WT 
strain (Figs. 3c, 5c) because Cyo is activated in the arcA-
knockout mutant (Fig.  1). For this, the qOUR for the 
arcA-knockout mutant was higher than that of the WT 
strain under condition III (Figs.  3b, 5b), as experimen-
tally observed [32]. The specific NADH production rate 
in the TCA cycle was slightly higher than that of the WT 
strain under condition III (Figs. 3d, 5d), as experimentally 
observed [32], because the TCA cycle is not repressed 
in this mutant. The specific NADH consumption rate 
through ethanol formation (by ALDH and ADH) was 
higher than that of the WT strain under conditions I and 
II (Figs. 3d, 5d).

Additional file 3: Figure S3C shows the carbon balances 
of the metabolic products including  CO2 and biomass in 
the arcA-knockout mutant at different DO levels. More 
glucose carbon was converted to biomass, and more  CO2 
was produced in the arcA-knockout mutant than the WT 
strain due to de-repression of the PDH and TCA cycle 
under condition III (Additional file 3: Figure S3A, C).

Rational design of a method for lactate production by a 
pfl‑knockout mutant
The present model was utilized for the rational design 
of microbial cellular factories and optimization of tar-
get metabolite production. While a pfl-knockout mutant 
was experimentally reported to exclusively produce lac-
tate [44], the effect of the DO level on the energy gen-
eration, biomass formation, and productivity has been 
rarely investigated. Simulated time course data of a batch 
culture of the pfl-knockout mutant reasonably predicted 

the experimental data (Fig. 6a) [44]. Here, we considered 
operation strategies for the efficient production of lactate 
by the pfl-knockout mutant.

Dual-phase cultivation was designed to enhance the 
target metabolite production, starting with an aerobic 
cultivation to promote the cell growth, followed by an 
anaerobic or micro-aerobic condition to facilitate the tar-
get metabolite production. The switching time when the 
culture condition is changed from aerobic to micro-aer-
obic condition is generally a key parameter for enhanced 
productivity. The effect of the switching time on lactate 
yield (g of product/g of substrate consumed) and produc-
tivity (g/l of product concentration/h of cultivation time) 
was simulated for the pfl-knockout mutant when 10  g/l 
glucose was supplied as a carbon source (Fig.  6b). The 
DO levels of 40 and 1% were set to the aerobic and micro-
aerobic conditions, respectively. The symbols in Fig.  6b 
represent the productivity of lactate obtained from the 
experiments [44, 58]. As expected, the yield was the high-
est when the cells were cultured consistently under the 
micro-aerobic condition, although the productivity was 
low. The productivity was improved to 0.81  g/l/h (at a 
switching time of 4.5 h) by the dual-phase cultivation, as 
compared to 0.38  g/l/h under the micro-aerobic condi-
tion throughout the cultivation (Fig. 6b).

Discussion
Advantages of the proposed kinetic model
There are several modeling approaches to simulate the 
fermentation characteristics. Khodayari et  al. [59] sim-
ulated the succinate overproduction by E. coli under 
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both aerobic and anaerobic conditions using the kinetic 
model-based k-OptForce method with ensemble mod-
eling approach and parameterization based on the data 
obtained from multiple mutant strains. Their model was 
able to predict the metabolism that improves the succi-
nate yield under aerobic condition but failed to predict 
it under anaerobic condition. It is essential to predict the 
dynamics of the cell growth and metabolite production 
over a broad range of DO levels and to understand the 
metabolic regulation mechanisms for the rational design 
of useful metabolite production. To meet these require-
ments, we have developed a kinetic model that imple-
ments redox regulation by Fnr and ArcA into central 
carbon metabolism [15, 20]. An advantage in the pro-
posed model is to accurately simulate metabolisms under 
anaerobic, micro-aerobic, and aerobic conditions.

The model was constructed and verified using available 
experimental data for the WT strain [24, 29, 41–44, 47–
51, 54]. The model-predicted behaviors were validated by 
the experimental data of the fnr-knockout mutant [51], 
the arcA-knockout mutant [32, 52, 53, 55, 60], and the 
pfl-knockout mutant [44].

To achieve efficient production of a target metabolite, 
the dual-phase cultivation method was investigated to 
improve the lactate production using the pfl-knockout 
mutant. This investigation revealed the importance of 
the optimal switching time from aerobic to micro-aer-
obic conditions to maximize the productivity (Fig.  6b). 
In addition, the trade-off between yield and productiv-
ity must be considered in practice, because the yield 
decreases with increased duration of the aerobic period 
(Fig. 6b).

Regulation mechanisms underlying the metabolic changes 
in response to DO level
In the simulation of the WT strain, the LDH flux exhib-
ited up and down changes with respect to DO level 
(Fig.  3b). The LDH flux increased more under condi-
tion III than under condition IV. Under condition III, 
ArcA repressed the PDH flux while increasing the Pfl 
flux. Although the total flux from pyruvate to acetyl-
CoA (PDH flux + Pfl flux) was almost the same between 
under conditions III and IV, the increased NADH/NAD+ 
ratio increased the LDH flux under condition III. On the 
other hand, the LDH flux decreased under condition II 
because pyruvate, the substrate of the LDH reaction, was 
consumed by the Fnr-enhanced Pfl reaction.

Lactate production increased in the fnr-knockout 
mutant under conditions I and II (Figs.  3a, 4a) as com-
pared with the WT strain, as experimentally observed 
[51]. Since the Pfl flux was reduced in the fnr-knockout 
mutant under conditions I and II (Figs. 3b, 4b), the total 
flux from pyruvate to acetyl-CoA was also reduced as 

compared to the WT strain, resulting in the accumu-
lation of pyruvate. Pyruvate was converted to lactate, 
accompanied by NADH consumption. On the other 
hand, the arcA-knockout mutant also exhibited higher 
lactate production than the WT strain around 4% DO 
under condition II (Figs.  3a, 5a) because the total flux 
from pyruvate to acetyl-CoA was reduced as compared 
to the WT strain as experimentally observed [60].

At lower oxygen levels under conditions I and II, the 
arcA-knockout mutant exhibited a marked increase in 
ethanol production (Figs. 3a, 5a). Although the total flux 
from pyruvate to acetyl-CoA was almost the same as that 
of the WT strain under conditions I and II, the NADH/
NAD+ ratio in the arcA-knockout mutant was much 
higher than those in the WT strain and the fnr-knockout 
mutant due to the high flux of PDH (Figs.  3b, 4b, 5b). 
This resulted in enhanced ethanol production. These 
simulation results were consistent with the experimen-
tal observation except for condition I (anaerobic condi-
tion) [53]. While the simulated ethanol production flux 
of the arcA-knockout mutant was higher than that of the 
WT strain, the experimental ethanol production flux in 
the arcA-knockout mutant was comparable to that in the 
WT strain under anaerobic condition. The discrepancy 
in the ethanol production under anaerobic condition 
would be due to the overestimation of the NADH/NAD+ 
ratio in the arcA-knockout mutant. This overestimation 
results from the fact that the simulated reductive path-
way flux through Ppc-MDH/Fum-Frd in the arcA-knock-
out mutant was lower than the experimental flux under 
anaerobic condition. Such underestimation of the reduc-
tive flux may be caused by the neglect of some effectors 
[61, 62] on the Ppc reaction responsible for the MDH 
and Frd fluxes. The present model includes the effect of 
FBP on the Ppc activity, but did not include the effects of 
acetyl-CoA, malate, and aspartate.

Toward virtual metabolism
Synthetic biology aims to understand the mechanisms 
governing the dynamic behaviors of biochemical net-
works in response to environmental stresses or genetic 
variations and facilitate the rational design or engineer-
ing of cells at the gene-regulation level. Synthetic biology 
approaches consist of the construction of a rigorously 
defined biochemical network map, development of math-
ematical models, experimental validation of these mod-
els, and analysis and rational design of biological systems, 
ultimately leading to computer-aided design of cells 
[63–65]. The proposed kinetic model was constructed 
according to this synthetic approach to provide a plat-
form for the rational design of biofuel and biochemical 
production by E. coli and for further modeling efforts, 
including extension to amino acid, nucleotide, lipid, and 
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polysaccharide metabolisms, as well as cell physiology. A 
comprehensive dynamic model, called ‘virtual E. coli,’ is 
expected to reproduce the complex dynamics of a series 
of genetic mutants under different conditions, such as 
consumption of multiple sugars, nitrogen, and phos-
phate starvation, osmotic pressure, and changes in pH. 
In addition, the kinetic model of the E. coli central car-
bon metabolism would be a feasible reference model for 
constructing the kinetic models of a variety of microbes, 
because central carbon metabolisms are relatively con-
served across them.

On the other hand, another characteristic of microbes 
is their metabolic variety due to evolution under vari-
ous growth conditions on earth. For example, yeast pro-
duces ethanol via pyruvate decarboxylase (PDC) and 
ADH, Clostridia employs acetone–butanol–ethanol 
(ABE) pathway, and Zymomonas has the Entner–Dou-
doroff (ED) pathway. Since the detailed metabolic path-
ways depend on the microbes, it is essential to take into 
account their differences to construct their kinetic mod-
els, while using the E. coli kinetic model as a reference 
model.

Conclusions
It is quite important to understand metabolic regula-
tion mechanisms from both scientific and engineering 
points of view. In particular, redox regulation in response 
to oxygen limitation is critically important in the practi-
cal production of biofuel and biochemical compounds. 
Therefore, we developed a kinetic model with enzymatic 
and transcriptional regulations to predict the dynam-
ics of metabolism at different DO levels. Transcription 
factor activities, metabolite concentrations, and fluxes 
of the WT strain and fnr- and arcA-knockout mutants 
were simulated to validate the model. Using this kinetic 
model, a rational operation strategy for the pfl-knockout 
mutant was designed to enhance lactate production. A 
dual-phase strategy was considered that involves initial 
cultivation under aerobic condition to enhance the cell 
growth rate, with subsequent cultivation under anaero-
bic or micro-aerobic condition to enhance the lactate 
production.
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