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a b s t r a c t

In contrast to stoichiometric-based models, the development of large-scale kinetic models of metabolism
has been hindered by the challenge of identifying kinetic parameter values and kinetic rate laws applicable
to a wide range of environmental and/or genetic perturbations. The recently introduced ensemble
modeling (EM) procedure provides a promising remedy to address these challenges by decomposing
metabolic reactions into elementary reaction steps and incorporating all phenotypic observations, upon
perturbation, in its model parameterization scheme. Here, we present a kinetic model of Escherichia coli
core metabolism that satisfies the fluxomic data for wild-type and seven mutant strains by making use of
the EM concepts. This model encompasses 138 reactions, 93 metabolites and 60 substrate-level regulatory
interactions accounting for glycolysis/gluconeogenesis, pentose phosphate pathway, TCA cycle, major
pyruvate metabolism, anaplerotic reactions and a number of reactions in other parts of the metabolism.
Parameterization is performed using a formal optimization approach that minimizes the discrepancies
between model predictions and flux measurements. The predicted fluxes by the model are within the
uncertainty range of experimental flux data for 78% of the reactions (with measured fluxes) for both the
wild-type and seven mutant strains. The remaining flux predictions are mostly within three standard
deviations of reported ranges. Converting the EM-based parameters into a Michaelis–Menten equivalent
formalism revealed that 35% of Km and 77% of kcat parameters are within uncertainty range of the
literature-reported values. The predicted metabolite concentrations by the model are also within
uncertainty ranges of metabolomic data for 68% of the metabolites. A leave-one-out cross-validation test
to evaluate the flux prediction performance of the model showed that metabolic fluxes for the mutants
located in the proximity of mutations used for training the model can be predicted more accurately. The
constructed model and the parameterization procedure presented in this study pave the way for the
construction of larger-scale kinetic models with more narrowly distributed parameter values as new
metabolomic/fluxomic data sets are becoming available for E. coli and other organisms.

& 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

1. Introduction

Over the past decade stoichiometric based genome-scale meta-
bolic models have been derived for a variety of organisms (Kim
et al., 2012). The global nature of these models enables the
assessment of theoretical limits of metabolic performance (Reed
and Palsson, 2003) and the identification of plausible engineering
strategies (Xu et al., 2011). These predictions can be significantly
sharpened through the introduction of regulatory constraints
(Shlomi et al., 2007; Covert et al., 2001) and restrictions implied

by thermodynamic information (Henry et al., 2007). Stoichio-
metric models have recently been used to model microbial
communities as well (Klitgord and Segrè, 2010; Salimi et al.,
2010; Stolyar et al., 2007; Zhuang et al., 2011; Zhuang et al.,
2012; Zomorrodi et al., 2014; Zomorrodi and Maranas, 2012).
Despite these advances, stoichiometric models alone cannot
quantitatively capture the effect of concentration levels and
enzyme saturation on reaction throughput and regulation. Kinetic
models have the potential to capture these interdependencies.
However, in contrast to stoichiometric models, the construction of
large-scale kinetic models has been plagued by a number of
challenges among which are the need for selection of kinetic rate
laws for each reaction and estimation of individual kinetic
parameters as well as the paucity of relevant experimental
data to support unambiguous kinetic model parameterization
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(Teusink et al., 2000). A number of approaches have been pro-
posed to overcome some of these difficulties. For example, in vitro
determined kinetic rate equations and enzymatic activities com-
bined with metabolic flux and concentration measurements were
used to explore the feasibility of constructing a kinetic model of
glycolysis in yeast (Teusink et al., 2000). However, discrepancies
between in vivo measurements and model predictions revealed
that in vitro derived models may not adequately describe in vivo
physiological behavior (Teusink et al., 2000). Several studies are
aimed to circumvent this limitation by modifying the employed
reaction mechanism and/or importing in vivo measurements (Jia
et al., 2012; Hoffner et al., 2013; Smallbone and Mendes, 2013;
Usuda et al., 2010; Liebermeister and Klipp, 2005; Smallbone et al.,
2007; Jamshidi and Palsson, 2010; Colon et al., 2010). For example,
a number of methods have been developed to estimate kinetic
parameters using dynamic in vivo measurements of metabolite
concentrations in response to environmental perturbations
(Chassagnole et al., 2002; Kadir et al., 2010; Theobald et al.,
1997; Vaseghi et al., 1999). An issue associated with these methods
is that even if a fast sampling approach (Theobald et al., 1993) is
carried out to measure metabolite concentrations, enzymatic
activity may be altered through unknown covalent modification
or allosteric regulation (Stephanopoulos et al., 1998). Several
efforts have also made toward postulating a generalized uniform
kinetic expression in order to improve and expand kinetic models.
For example, approximate enzyme kinetic equations (Chakrabarti
et al., 2013; Hatzimanikatis and Bailey, 1996; Hatzimanikatis et al.,
1998; Hatzimanikatis et al., 1996; Heijnen, 2005; Nielsen, 1997; Pozo
et al., 2011; Savageau, 1970; Smallbone et al., 2013; Smallbone et al.,
2010; Sorribas et al., 2007; Stanford et al., 2013; Visser and Heijnen,
2003) or a combination of in vitro derived lumped and approximate
rate equations (Drager et al., 2009; Costa et al., 2010) are frequently
used to simplify the mathematical analysis. In general, however, the
prediction quality deteriorates as fluxes move away from the
reference state (Heijnen, 2005; Liebermeister and Klipp, 2006).

Decomposable kinetic nonlinear formalisms have recently
emerged as alternatives to lumped or approximate rate equations
(Miskovic and Hatzimanikatis, 2011). These approaches allow for
incorporating both metabolite and enzyme concentrations/activ-
ities and implementing any type of reaction including regulatory
interactions. While these models hold promise to describe meta-
bolism on a system-wide level, the presence of a large number of
parameters in nonlinear expressions makes the parameter estima-
tion challenging (Jouhten, 2012). Given that the values of indivi-
dual kinetic parameters and even the form of the kinetic rate
laws for each reaction may change in response to genetic or
environmental perturbations, the identification of unbiased para-
meter value ensembles has been suggested as an effective alter-
native to unique parameter value elucidation (Almaas et al., 2004;
Schellenberger and Palsson, 2009; Zamora-Sillero et al., 2011). For
example, sampling of model parameters was used to identify
feasible solution space of kinetic parameters (Famili et al., 2005),
elasticities (Miskovic and Hatzimanikatis, 2010; Steuer et al., 2006;
Grimbs et al., 2007), admissible flux profiles (Sen et al., 2013) and
kinetic parameter distributions (Liebermeister and Klipp, 2006). In
another effort, ensemble construction of model parameters based
on dynamic flux estimation (DFE) (Goel et al., 2008) was proposed
to identify a subset of kinetic parameters that provide equivalent
goodness-of-fit to dynamic concentration profiles (Jia et al., 2012).

A challenge associated with determination of parameters of
kinetic models using the sampling methods is an extremely large
feasible search space (Schellenberger and Palsson, 2009). Ensem-
ble modeling (EM) of metabolic networks (Tran et al., 2008) was
developed towards addressing this challenge through successively
reducing the size of parameter space by using phenotypic data
such as experimental flux and/or concentration measurements

while incorporating thermodynamic constraints (Rizk and Liao,
2009). In this platform, any type of reaction mechanism able to
describe enzyme saturation phenomenon can be employed to
construct the model. For each reaction, if the functional form of
the enzyme kinetic is already determined, it can be used to frame
the model, otherwise, each reaction is decomposed into elemen-
tary reaction steps using mass action kinetics, which is able to
conserve the mechanistic details of enzymatic reactions and
capture saturation behavior and substrate-level regulation (Tan
and Liao, 2012). The EM procedure starts with constructing an
initial set of kinetic models all predicting the same phenotype
(e.g., flux distribution) for the wild-type strain, but with different
dynamic behaviors (Tan and Liao, 2012). Next, the impact
of defined perturbations (Alper et al., 2005; Kitagawa et al.,
2005) is simulated by all models, where each model may predict
a different phenotype with a dynamic response. These newly
obtained phenotypic data provide a basis for screening models
against experimental data. Each perturbation and screening cycles
train the model using a new set of experimental measurements
and are repeated until a minimal set of kinetic models all of which
can predict the wild-type and mutant phenotypes with a reason-
able accuracy is identified. This approach has been successfully
applied to study the production of lysine (Contador et al., 2009),
fatty acid oxidation (Dean et al., 2010), aromatic production (Rizk
and Liao, 2009) and modeling cancer cells (Khazaei et al., 2012).
Furthermore, in an earlier effort, a systematic procedure was
introduced for identifying gene/enzyme perturbations leading to
a maximum reduction in the number of models retained in the
ensemble after each round of perturbation (Zomorrodi et al.,
2013).

Despite the availability of comprehensive in vivo metabolomics
and fluxomic datasets for wild-type and mutant strains of well-
studied microorganisms such as E. coli (Ishii et al., 2007) and
Saccharomyces cerevisiae (Wisselink et al., 2010; Blank et al., 2005),
they have not been utilized in a systematic way for kinetic model
reconstruction. This study aims to make use of these resources for
the systematic parameterization of large-scale kinetic models of
metabolism by combining efficient optimization-based approaches
and the EM formalism. Using multiple omics (i.e., fluxomic) data
available for E. coli (Ishii et al., 2007), we construct a kinetic model of
the core metabolism of E. coli satisfying the in vivo flux measure-
ments for wild-type and seven mutant strains under aerobic condi-
tion with glucose as the carbon source. This model contains 138
reactions and 93 metabolites and includes all the reactions used in
the previously published kinetic models (Chassagnole et al., 2002;
Kadir et al., 2010; Peskov et al., 2012). The model accounts for 60
substrate-level regulatory interactions extracted from online data-
bases (Karp et al., 2000; Schomburg et al., 2013). An optimization-
driven parameter identification method is proposed to elucidate the
kinetic parameters in the form of elementary mechanisms for a given
metabolic network. A leave-one-out cross-validation test was also
performed to assess the flux prediction capability of the model. In
addition, 35% and 77% of identified Km and kcat parameters, respec-
tively, are consistent with the previously reported kinetic para-
meter values and also the predicted concentrations for 68% of
metabolite concentrations are in good agreement with experimental
measurements.

2. Materials and methods

2.1. Model scope and experimental data

A metabolic model composed of 138 reactions and 93
metabolites representing E. coli core metabolism (The Core E.
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coli Model) was constructed. A pictorial representation of the
model is shown in Fig. 1.

This model spans reactions in glycolysis/gluconeogenesis,
pentose phosphate (PP) pathway, TCA cycle, major pyruvate
metabolism and anaplerotic reactions and a number of reactions
in other parts of the metabolism, such as alternative carbon
metabolism, nucleotide salvage and oxidative phosphorylation
and glutamate metabolism (see Fig. 2).

Fluxomic data for wild-type and multiple mutant strains of
E. coli (Ishii et al., 2007) were used to parameterize the model. In
particular, metabolic flux data for 25 mutants growing under
aerobic conditions with glucose as the carbon source were
extracted (Ishii et al., 2007). Upon excluding mutant flux data
corresponding to reactions absent in the model and aggregating
results for isozymes (with the exception of pykA and pykF), eight
sets of experimental measurements were assembled. These

Fig. 1. (Colour online) The constructed kinetic model of E. coli core metabolism.
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included metabolic fluxes for the wild-type and seven different
mutant strains (Δgnd, Δzwf, Δrpe, ΔppsA, ΔpykA, ΔpykF and
Δpgi). Note that since the enzymatic activities of both pykA and
pykF in wild-type E. coli are available in the literature (Karp et al.,
2000; Al Zaid Siddiquee et al., 2004; Hoque et al., 2005) we were
able to account for the mutant flux data of both of their mutant
strains by using two separate reactions in our model. In total, we
used flux measurements for approximately 25 reactions in each
mutant strain, which include the major intercellular reactions in
glycolysis, PP pathway and TCA cycle (Ishii et al., 2007), as shown
in Fig. 1. Any flux measurement lower than one (per 100 mmol/
gDW/h of glucose uptake) was assumed to be statistically insig-
nificant and was excluded from the analysis. Standard Gibbs free
energy estimates for all reactions in the model were obtained
from the iAF1260 model of E. coli (Feist et al., 2007). In
accordance with the EM procedure (Tran et al., 2008), all
reactions in the model were decomposed into elementary steps
and all kinetic parameters were scaled with respect to the
metabolite and enzyme concentrations/activities for the refer-
ence (wild-type) strain.

The initial flux distribution for the EM simulations was
obtained as follows: The maximum biomass yield was obtained
first using the flux balance analysis for the iAF1260 model (Feist
et al., 2007) while imposing the experimental flux measurements
(for 43 reactions) (Ishii et al., 2007) as constraints under aerobic
minimal glucose conditions. Flux Variability Analysis (FVA)
(Mahadevan and Schilling, 2003) was used next to identify the
flux ranges for reactions without experimental measurements
upon fixing the biomass flux at the value obtained in the first
step. The obtained flux ranges were used to constrain the reactions
without available measurements in our model. A feasible flux
distribution was then obtained by imposing the experimental and
FVA-driven flux ranges in our model. The intracellular reactions
carrying a zero flux in the reference strain but a non-zero flux in at
least one mutant are adjusted to carry a minimal amount of flux
(i.e., equal to 0.05 mmol/gDW/h per 100 mmol/gDW/h of glucose
uptake) in the reference strain. This ensures the participation of
the reaction in the construction of the original EM ensemble.
Examples of such reactions are those catalyzed by Edd and Eda
which do not carry flux in the wild-type but become active inΔpgi
(Ishii et al., 2007).

Sixty regulatory interactions for reactions of the central meta-
bolism were extracted from BRENDA (Schomburg et al., 2013) and
ECOCYC (Karp et al., 2000) databases and were included in the
model following the EM procedure (see Supplementary file S4 for
a complete list). These regulatory reactions introduced new
elementary reactions and dead-end enzyme complexes in the
model (Cornish-Bowden, 2012). The regulatory reactions are not
active in the reference strain and carry a zero net flux (Rizk and
Liao, 2009).

2.2. Identification of kinetic parameter values satisfying
experimental data for the wild-type and mutant strains

The original EM procedure relies on the construction of an
initial ensemble of kinetic models by sampling reaction reversi-
bilities and enzyme fractions followed by successive screening
steps using the flux data for the perturbed strains to identify
minimal sets of kinetic parameters satisfying all sets of flux data
(Tran et al., 2008). A limitation associated with this type of
screening is that it may result in an empty ensemble, i.e., all
models in the current ensemble may be rejected after one or more
rounds of model screening even if only a single reaction deviates
from the experimental measurements. To avoid empty ensembles,
we developed a new procedure combining the original sampling
method of EM with a parameter identification step that minimizes
the deviation of the model predictions from the available flux
measurements for all mutant strains (see Fig. 3).

Formal model parameterization involves solving an optimiza-
tion problem minimizing the deviation of model predictions (e.g.,
for reaction fluxes) from experimental measurements (Costa et al.,
2010; Tohsato et al., 2013; Balsa-Canto et al., 2010). However,
identification of a set of kinetic parameters satisfying multiple sets
of experimental data is a challenging task due to the very large
feasible space of kinetic parameter values as well as the high
number of kinetic parameters that need to be estimated (Moles
et al., 2003) (as each reaction in the original model is decomposed
into multiple elementary reaction steps). In order to reduce the
search space, we decided to discretize the feasible space of the
kinetic parameter values by taking advantage of the EM formalism.
To this end, an initial ensemble of models is constructed by
uniformly sampling the enzyme fractions and reaction reversibil-
ities within the identified feasible ranges (see panels 2.1 and 2.2 of
Fig. 3). Choosing the size of initial ensemble is a compromise
between parameter space coverage and memory requirements
per run. In this study, we used an ensemble size of 217¼131,072, as
no improvement in the convergence speed and correlation of
model predictions with experimental measurements was achieved
for a larger ensemble size of 218. An ensemble size of 217 pro-
vides an approximate resolution of 7� 10�6 for each sampled
parameter.

Despite this discretization, we found that solving the parameter
estimation problem still remains challenging when considering
multiple sets of experimental flux data simultaneously. In an effort
to overcome this challenge, we developed an integrative proce-
dure where kinetic parameter identification is carried out by
successively adding one mutant data set at a time. The optimal
kinetic parameter values obtained upon iteratively solving a two-
step optimization problem are used to initialize the next iteration
where a new set of flux data is included. This procedure is
repeated until all mutant strain data are considered (see Fig. 4).

Fig. 2. Sub-system classification of reactions in the constructed kinetic model.

A. Khodayari et al. / Metabolic Engineering 25 (2014) 50–62 53



Model parameters include both discrete (EM decomposed reaction
parameters) and continuous (elementary reactions for regulatory
interactions and metabolic reactions carrying a zero net flux in
the reference strain). We first optimize over the set of discrete
parameter values followed by minimization of the model's
predicted deviation with respect to the continuous parameters.

2.3. Identification of the kinetic rate constants for metabolic
reactions carrying a nonzero flux in the reference and mutant strains

In this optimization problem, the optimal combination of
the sampled parameters in the ensemble is identified by mini-
mizing the average relative deviation between experimentally

Fig. 3. A schematic representation of the kinetic model construction procedure. (1) First, a steady state flux distribution is obtained by imposing the available fluxomic data
and refining the flux ranges (see Materials and methods section). (2.1) EM procedure is used to decompose each reaction into elementary mechanistic reaction steps ( ~v2lj �1

j
and ~v2lj

j represent the forward and reverse flux of the elementary reaction j in elementary step lj , respectively). Thermodynamic constraints are employed to confine the
ranges of reactions reversibilities. In the absence of experimental measurements for metabolite concentration, they are normalized to the their steady-state values (see
Supplementary text S1). Conservation of mass is written for the total available enzyme in the system for each enzyme. Elementary kinetic parameters are then expressed as a
function of reaction reversibilities and enzyme fractions. (2.2) An ensemble of elementary kinetic parameters of size P is constructed by uniformly sampling reaction
reversibilities and enzyme fractions. (2.3) For a given set of kinetic parameters the system of ODEs representing the conservation of mass for each metabolite and enzyme
fraction is integrated until reaching a steady-state. (3) In order to improve model fitness, the optimizer provides a new set of model parameters (see Section 2 Materials and
methods section). Ultimately, a set of kinetic model that is tested and validated along different fluxomics is identified. (4) The model predictions are validated by a
comparison between the available metabolomics, kinetic constants and cross-validations.
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determined fluxes and those predicted by the model. The terms in
the objective function are scaled by using the coefficient of
variation (Becskei and Serrano, 2000; Isaacs et al., 2003) to capture
the uncertainty in the experimental flux measurements. As a
result, the reactions with tighter confidence interval have a larger
contribution in the objective function. This procedure maintains
convergence of all new models, generated by combining kinetic
parameter values, to the steady-state of the reference strain. The
rules that need to be followed in combining parameter values are
described in Supplementary text S1. In essence, these rules require
that for a given reaction, elementary kinetic parameters from the
same model in the ensemble need to be chosen simultaneously
(see Supplementary text S1 for more detail).

2.4. Identification of the kinetic rate constants for metabolic
reactions carrying a zero flux in the reference and those representing
regulatory interactions

Reactions that do not carry any flux for the wild-type may carry
a nonzero flux in a perturbed strain. The kinetic parameters for

these reactions are not constrained in the initial ensemble. The
same holds true for regulatory reactions. The EM procedure
assigns arbitrary values to both forward and reverse elementary
reaction steps so as the net flux becomes zero. Therefore, in the
second optimization problem the rate of decomposed forward
(or reverse) reaction with zero net flux is treated as continuous
non-negative variables whereas the model parameters (i.e., ele-
mentary kinetic parameters) for reactions with non-zero fluxes are
retained at the values obtained from the first optimization
problem (see Supplementary text S1 for more details).

2.5. GA implementation of the discrete and continuous optimization
problems

Both of the discrete and continuous optimization problems
described above are solved using a genetic algorithm (GA) imple-
mentation in MATLAB (MathWorks Inc.). The GA representation of
each one of these two problems is shown pictorially in Fig. 5 and is
detailed as follows:

Genotype and phenotype of individuals: Each kinetic model
serves as a chromosome in the GA representation. Each gene in
the chromosome for the discrete optimization problem corre-
sponds to overall (un-decomposed) reaction and can take an
integer value between 1 and P, where P is the total number of
models in the initial ensemble. Alternatively, every gene in the
chromosome in the continuous optimization problem corresponds
to an elementary reaction step and can take any value between
zero and an upper bound on the flux value of the forward (or
reverse) reaction (see Fig. 5 and Supplementary text S1 for more
detail). The elementary flux values are then used to obtain the
corresponding elementary kinetic parameters (Tran et al., 2008).

Population size: In all simulations the population size was set to
three to five times the number of variables (i.e., genes) in the
chromosomes.

Initialization of population: Only one chromosome was initia-
lized with the solution obtained in the previous iteration and the
rest were initialized randomly (using the built-in GA function in
MATLAB).

Crossover operator: We examined algorithm performance with
different crossover fractions to find an optimal one. We found that
a crossover fraction between 0.7–0.8 for early generations pro-
vides and a crossover fraction between 0.8–0.9 for later genera-
tions provides the best performance.

Termination criterion: The GA procedure is terminated when the
fitness of the elite chromosome is considered sufficiently high (i.e.,
as good as the elite chromosome before addition of new flux
dataset) or if no improvement is observed in the elite chromosome
after 20 generations. We also set a maximum number of genera-
tions (i.e., 100) for each optimization problem after which the
procedure was terminated.

2.6. Comparison of model predictions against experimental data

Since confidence intervals were provided only for the wild-type
flux and metabolite concentration measurements in the data set
(Ishii et al., 2007), we constructed a confidence range for each
case, separately. For the reported fluxes, the same confidence
intervals reported for each reaction in the wild-type strain were
used to construct a flux range around the reported values (i.e., one
standard deviation confidence interval) in the mutant strains. For
metabolite concentrations, the reported confidence intervals for
metabolite concentrations in the wild-type strain were too wide
(coefficient of variation is more than 20% for more than 85% of the
reported metabolite concentrations) that would have encom-
passed all predicted values by the model. Therefore, we created
a more conservative range by choosing 10% deviation from the

Fig. 4. A descriptive representation of the optimization problem.
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nominal (mean) values to represent experimental ranges. For the
lumped kinetic parameters (Km and kcat), given that multiple
values are reported in the literature and databases such BRENDA
(Schomburg et al., 2013), we used one standard deviation from
the mean of the reported values as experimental ranges (see
Supplementary file S4 for more detail).

3. Results

3.1. Elementary kinetic parameter estimation

An initial ensemble of kinetic models all satisfying the refer-
ence (wild-type) flux data was first created. Starting with the
Δgnd mutant data, we identified the best combination of kinetic
parameter values in the initial ensemble (see Section 2) satisfying
experimental flux data for this mutant. This procedure is repeated
successively by adding one more mutant at a time (i.e., ΔppsA,
ΔpykA, Δzwf, Δpgi, ΔpykF and Δrpe, respectively). The kinetic
parameter values obtained in each step are used as an initial point
for solving the optimization problems in the next step. By using
this procedure we were able to identify kinetic parameter values
simultaneously satisfying the experimental flux measurements for
the reference (wild-type) and the seven mutant strains mentioned
above. The model is available for download at http://maranas.che.
psu.edu/models.htm as a mat-file (MathWorks Inc.).

Fig. 6 shows the deviation of the predicted fluxes of selected
reactions by the final model from the measured fluxes. As shown

in this figure the model parameterization procedure performs well
in fitting the predicted fluxes for 78% of the reactions (with
measured fluxes) as they fall within the reported experimental
ranges (see Section 2.6 of Methods and materials). For the rest of
the reactions, the model prediction is almost always within three
standard deviations of the experimental ranges.

3.2. Model cross-validation

In order to avoid over-fitting the data to the model and to
evaluate the accuracy of the model in predicting the cellular
phenotype in response to new perturbations, we conducted a
leave-one-out cross-validation test (Jesse Russell, 2012). In each
validation, the flux data for one mutant strain was excluded from
the training set and the resulting model was used to predict the
fluxes for the excluded mutant strain (see Fig. 7).

This analysis showed that excluding one at a time the flux data
for Δgnd, ΔppsA, ΔpykA, Δzwf, ΔpykF and Δrpe in the cross-
validation tests yields an average reduction in prediction quality
by approximately 15% across all tests. We note that these six gene
deletion mutants are located in the vicinity of the pay-off phase of
glycolysis (i.e., ppsA, pykA and pykF) or in the PP pathway (i.e., gnd,
zwf and rpe). This means that in the absence of one mutant flux
data in a cross-validation test, the model can still be trained
robustly using flux data for its adjacent mutants. This is not,
however, the case for Δpgi whose absence from the training set
cannot be compensated by flux data from other mutants as
alluded to by the much higher deviation from experimental data

Fig. 5. Genotype–phenotype representation of each chromosome.
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Fig. 6. Deviation of the predicted steady-state flux of some selected reactions by the constructed model from available experimental measurements in (a) Δgnd, (b) ΔppsA,
(c) ΔpykA, (d) ΔpykF, (e) Δpgi, (f) Δzwf and (g) Δrpe strains. The blue circles represent the experimental measurements and the green diamonds the predicted flux
distributions. The error bars denote one standard deviation confidence interval for the corresponding reaction in the wild-type strain. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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(i.e., 50% reduction in prediction quality) upon exclusion. In
particular, the flux of reactions in glycolysis and Entner–Doudoroff
pathway are poorly predicted in the absence of flux data for the
Δpgi strain. For example, the reaction catalyzed by Eda (6-PG-
G3PþPYR) does not carry flux in any of the mutant strains except
for Δpgi as it provides G3P (Glyceraldehyde 3-phosphate) and PYR

(Pyruvate) intermediates which cannot be produced through
glycolysis in the absence of pgi. Therefore, upon omitting flux
data for Δpgi, the model cannot anticipate the activity of the
Entner–Doudoroff pathway. Another example involves the reac-
tion catalyzed by Fba (FDP-DHAPþG3P) whose flux is reduced
significantly (by 40% on average compared to wild-type and other
mutant strains) in theΔpgi strain. This significant reduction in flux
of this reaction cannot be captured when excluding Δpgi from the
training flux data set. Nonetheless, even though these discrepan-
cies propagate to some extent in other part of the network, the
model prediction is still acceptable for the remaining reactions
(i.e., on average 12% deviation from the experimental ranges).

In addition, to flux comparisons, we also examined the esti-
mated kinetic parameters in each cross-validation test. This
showed that the coefficient of variation is less than 20% for more
than 90% of the kinetic constants implying that the model
parameterization was generally robust to the omissions of indivi-
dual flux data sets with the exception of examples noted earlier.

3.3. Evaluation of the model performance in predicting metabolite
concentrations

Taking advantage of the availability of experimental measure-
ments for metabolite concentrations for both wild-type and
mutant strains (Ishii et al., 2007), we also assessed that the
predictive power of the constructed kinetic model for metabolite
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Fig. 7. Cross-validation analysis. The gray bars represent the average scaled
deviation of the predicted steady-state fluxes for different mutant strains upon
their exclusion from the training set. The white bars correspond to the average
scaled deviation of the predicted steady-state flux distribution from the experi-
mental measurements while including all mutant datasets. The difference between
two bars represents the reduction in flux predictive power upon excluding all flux
data for the one mutant.

Fig. 8. (Colour online) (a) Prediction performance of the model for metabolic concentrations. (b) Comparison of the EM-based computed Michaelis–Menten constant and
(c) turnover number with the values reported in literature or databases (Schomburg et al., 2013). Dashed lines denote one order of magnitude departures from the
experimental values.
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concentrations, which were used for model training (see Fig. 8a).
First, the normalized metabolite concentrations in the EM proce-
dure were converted into actual concentrations for metabolites
with available experimental data in the reference strain (i.e., wild
type). For metabolites with no concentration data (approximately
50%) we used the ranges used in the iAF1260 model of E. coli (Feist
et al., 2007). This analysis shows that 68% of the predicted
metabolite concentrations are consistent with the experimental
measurements implying that there is an overlap between the
predicted ranges and the experimentally reported/calculated
ranges (see Section 2.6 of Methods and materials).

3.4. Evaluation of the estimated kinetic parameter values

One can derive the corresponding kinetic parameters of an
overall reaction, given the kinetic parameter values of its corre-
sponding elementary reaction steps assuming a pseudo steady-
state assumption (Edda Klipp et al., 2009; Cornish-Bowden, 2012)
(see Supplementary text S2 for more detail). This allows compar-
ing known kinetic parameter values for Michaelis constants and
turnover numbers (i.e., Km and kcat, respectively) reported in the
literature and databases such as BRENDA (Schomburg et al., 2013)
with values estimated in this study. First, the scaled Km and kcat
values in the EM procedure were converted into actual ranges
using the metabolite concentration ranges in the reference strain
(i.e., wild type). A comparison between the experimentally mea-
sured Km and kcat values and the corresponding EM-based

parameters using the constructed kinetic model is shown in
Fig. 8b and c. Similar to concentration comparisons, an overlap
between the predicted and experimental ranges is denoted as
consistency (see Section 2.6 of Methods and materials). As shown
in these figures 35% and 77% of the estimated Km and kcat values
are consistent with experimental measurements, respectively (see
Supplementary text S3 for a statistical assessment of the signifi-
cance of the reported agreements). It should be noted that due to
the existence of a large variation in the reported values of kcat in
the literature (see Supplementary file S4), most kcat values esti-
mated in this study fall in the reported/calculated confidence
ranges, as shown in Fig. 8c. This implies that consistency of kcat
values may not form a solid basis for testing the accuracy of the
identified model parameterization.

3.5. Sensitivity analysis

Parameter sensitivity is assessed by quantifying the effect of
kinetic parameter value perturbations on the prediction quality of
the model. Lack of sensitivity implies non-identifiability of the
corresponding parameter by the available flux data (Tohsato et al.,
2013). Each elementary kinetic parameter individually scaled up
and down by a total of 10-fold. Any error of less than 5% from the
original flux predictions by the model was assumed to be negli-
gible. The error was computed as the average deviation of the
predicted fluxes from those of the constructed model across all
mutants. This analysis indicates that for 33% of the elementary

Fig. 9. Results of the sensitivity analysis. Upper and lower limits of the elementary kinetic parameters with the prediction error of less than 5% from the original flux
predictions for reactions in (a) glycolysis, (b) TCA cycle and (c) PP pathway. For each reaction the most sensitive parameter is illustrated.

A. Khodayari et al. / Metabolic Engineering 25 (2014) 50–62 59



kinetic parameters the model predictions are sensitive to pertur-
bations implying that it is not possible to change the kinetic
parameter value and still retain a prediction error of less than 5%.
In particular, 44% of the elementary kinetic parameters of glyco-
lysis, 29% of TCA cycle and 33% of PP pathway reactions showed
sensitivity to perturbations. The highest sensitivity was observed
for elementary kinetic parameters of the reactions catalyzed by
Gapd, Fba and Pts which were quoted among the most influential
parameters in previous reports (Costa et al., 2010; Di Maggio JCDR
and Diaz, 2009). Fig. 9 shows the ranges of the elementary kinetic
parameters with prediction error of less than 5% from the original
flux predictions, for the most sensitive parameter of a given
reaction. In general, model parameters of reactions that are located
at the entry point of sub-pathways (i.e., glycolysis, TCA cycle and
PP pathway) were more sensitive to perturbation as detailed
before (Tohsato et al., 2013). As expected, due to the global
participation of cofactors in the network, the model was quite
sensitive to perturbations in kinetic parameters of reactions
catalyzed by transhydrogenase (THD2 and NADTRHD), dehydro-
genase (NADH16pp), adenylate kinase (ADK1) and ATP synthase
(ATPS4rpp) enzymes. Given that elementary kinetic parameters
were perturbed one at a time, any conclusion regarding indefin-
ability of the remaining 67% of the parameters whose perturba-
tions results in a prediction error of more than 5% would require
accounting for potential correlations among different kinetic
parameters. To gain some insight into the impact of correlations
among model parameters, we performed sensitivity analysis for a
number of selected pairwise combinations of parameters. This
analysis revealed that model predictions are indeed sensitive to
the combined perturbation of these parameters even though they
were insensitive to their individual perturbations. For example,
flux predictions by the model were found to be highly sensitive
(i.e., error of model predictions was more than 100% from the
original flux predictions by the model) to pairwise perturbations
of the elementary kinetic parameters of the reaction catalyzed by
ME1 with those of reactions catalyzed by Eda, Edd, ACONTa and
Fbp, while they were insensitive to their individual perturbations.

4. Summary and discussion

In this study, we developed a kinetic model of E. coli core
metabolism by integrating the EM formalism (Tran et al., 2008)
with efficient GA-based techniques and making use of the avail-
able flux data for wild-type and seven mutant strains (Ishii et al.,
2007; Bennett et al., 2009). This model contains 93 metabolites,
138 reactions and 60 substrate-level regulatory interactions. The
parameter estimation procedure proposed in this study was
successful in fitting the flux predictions by the model to experi-
mental measurements for 78% of the reactions while the remain-
ing predicted reaction fluxes are within three standard deviations
of measured ranges. A possible reason for not being able to fit all
reaction fluxes is the presence of tight bounds on concentrations.
It is the tight coupling of reaction fluxes through concentrations
irrespective of kinetic parameter values that disallows matching
all experimentally reported flux values. The limited scope of the
current model, as it accounts for only 138 out of 2383 reactions in
iAF1260, implies that the effect of interactions with absent reac-
tions and metabolites could not be captured.

Cross-validation tests and sensitivity analysis revealed that the
constructed model can be used with a high confidence to predict
most of reaction fluxes and metabolite concentrations involved in
central metabolism. Existing kinetic models do not typically per-
form well in predicting the phenotype of genetically perturbed
strains as parameterization is carried out for a single flux data set.
The presented model on the other hand was constructed by

simultaneously accounting for multiple sets of flux data for the
wild-type and several mutant strains. The presented model con-
struction pipeline also provides a systematic approach for future
improvements as more flux data are becoming available. This
study paves the way for the reconstruction of a genome-scale
kinetic model for E. coli and other organisms. This, however, calls
for the availability of additional experimental flux measurements
for mutant strains carrying mutations in diverse parts of the
metabolism in order to support the robust parameterization of
the larger-scale kinetic model.
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