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Abstract

Background: Clostridium acetobutylicum is an anaerobic bacterium which is known for its solvent-producing
capabilities, namely regarding the bulk chemicals acetone and butanol, the latter being a highly efficient biofuel.
For butanol production by C. acetobutylicum to be optimized and exploited on an industrial scale, the effect of
pH-induced gene regulation on solvent production by C. acetobutylicum in continuous culture must be understood
as fully as possible.

Results: We present an ordinary differential equation model combining the metabolic network governing solvent

production with regulation at the genetic level of the enzymes required for this process. Parameterizing the model
with experimental data from continuous culture, we demonstrate the influence of pH upon fermentation products:

at high pH (pH 5.7) acids are the dominant product while at low pH (pH 4.5) this switches to solvents. Through
steady-state analyses of the model we focus our investigations on how alteration in gene expression of C.
acetobutylicum could be exploited to increase butanol yield in a continuous culture fermentation.

Conclusions: Incorporating gene regulation into the model of solvent production by C. acetobutylicum enables an
accurate representation of the pH-induced switch to solvent production to be obtained and theoretical
investigations of possible synthetic-biology approaches to be pursued. Steady-state analyses suggest that, to
increase butanol yield, alterations in the expression of single solvent-associated genes are insufficient; a more
complex approach targeting two or more genes is required.

Background

A renewed interest in the development of biofuels is
emerging as a result of a variety of factors including
dwindling crude oil reserves, concerns over the environ-
mental impact of fossil fuels and threats to national
security potentially limiting access to resources [1]. In
recent years, biofuels have been predominantly sourced
from crops, resulting in competition for limited food
resources and land [2-5]; bacterial fermentation has
been considered a possible answer to this problem [6].
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One of the best-studied bacteria for biofuel production
is Clostridium acetobutylicum. Clostridial bacteria are
strictly anaerobic, Gram-positive and form highly-resis-
tant spores. Many of the clostridial species, such as
Clostridium difficile and Clostridium botulinum, are
highly pathogenic and cause devastating diseases. Some,
however, like C. acetobutylicum which was first isolated
from corn in 1912 by Chaim Weizmann [7], are harm-
less to humans, animals and plants and make a wide
range of useful chemicals [8].

The metabolism of C. acetobutylicum is characterized
by the so called acetone-butanol fermentation (AB fer-
mentation) which is also referred to as acetone-butanol-
ethanol (ABE) fermentation. Since butanol is a more
efficient biofuel than many other solvents such as

© 2011 Haus et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.


mailto:sara.jabbari@nottingham.ac.uk
http://creativecommons.org/licenses/by/2.0

Haus et al. BMC Systems Biology 2011, 5:10
http://www.biomedcentral.com/1752-0509/5/10

ethanol, much research is currently focused on this bac-
terium [1,9]. The metabolic pathway of AB fermentation
comprises two characteristic phases: acidogenesis and
solventogenesis. During the transition phase the genera-
tion of the solvents acetone and butanol is induced and
these become the dominant fermentation products. This
switch is called the metabolic (or solventogenic) shift.
Though the metabolic pathways leading to solvent and
acid production are clearly defined [10], the mechanisms
governing the shift are not well understood. It has been
shown, however, that under continuous culture condi-
tions in a chemostat, the external pH is a crucial prere-
quisite for the induction of this metabolic change
[11,12].

Glucose transport into the cell is mediated by a phos-
phoenolpyruvate-dependent phosphotransferase system.
Intracellular processing via glycolysis follows the forma-
tion of pyruvate as a central metabolite [10]. A reduced
metabolic network of AB fermentation is shown in
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Figure 1. Acetyl-CoA (which will be denoted AC in our
mathematical model) produced from pyruvate is a
branch-point intermediate located at the node dividing
the pathways, one leading to the formation of the acids
acetate (A) and butyrate (B), and the other to the sol-
vents acetone (An), butanol (Bn) and ethanol (En). In
the acid producing branches, acetyl-CoA and butyryl-
CoA (BC) are first converted to acetyl phosphate and
butyryl phosphate, respectively; these acylphosphates are
then converted to acetate and butyrate (see [10] for a
review). The acids are excreted from the cell and can be
re-absorbed subsequently. Reinternalized butyrate and
acetate molecules are converted to butyryl-CoA and
acetyl-CoA respectively in Ping-Pong-Bi-Bi reactions
(for more information about this type of enzymatic reac-
tion, see for example [13]). These reactions require the
two substrates (acetoacetyl-CoA, AaC, and butyrate or
acetate) and result in two products (acetoacetate, Aa,
and butyryl-CoA or acetyl-CoA respectively). Both
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Figure 1 A schematic view of the joint metabolic and gene regulation network model of AB fermentation in C. acetobutylicum. Acids
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are outlined in red and solvents in blue. The AB fermentation is characterized by a bi-phase metabolism. Following glycolysis the cells produce
either the acids acetate (A) and butyrate (B) at a high pH, or the solvents acetone (An) and butanol (Bn) at a low pH while ethanol (En) is made
in both phases but at a relatively low level. A characteristic reaction in this metabolism is the conversion of acetate (or butyrate) and
acetoacetyl-CoA into acetyl-CoA (or butyryl-CoA) and acetoacetate, this being the first step in the formation of solvents from acids. We reduced
the metabolic network published in [10] to ten reactions R; found in Table 1. For reactions Rs, Rs, Re, R, and Ry we include gene regulation for
the enzymes which are involved in the production of the solvents.
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reactions are mediated by the CoA-transferase which
consists of the two subunits CtfA/B. Acetoacetate is
converted into acetone by the enzyme acetoacetate dec-
arboxylase, or Adc (Ad) [14,15]. During the solvent pro-
duction phase, acetyl-CoA and butyryl-CoA are
converted to acetylaldehyde and butyraldehyde, respec-
tively, as intermediates for ethanol and butanol. Two
sets of dehydrogenase activities are required to accom-
plish these reductions. C. acetobutylicum is able to fer-
ment ethanol independently from acetone and butanol
in acidogenesis under continuous culture conditions, i.e.
although it is a solvent, it is produced at roughly the
same quantities during acidogenesis and solventogenesis.

Experiments showed that in continuous culture C. acet-
obutylicum shifts its metabolism in response to the exter-
nal pH: cells produce predominantly acetate and butyrate
above a pH of 5.0 and acetone and butanol when the pH
is lower than 5.0 [11,12,16,17]. It is postulated that the
switch to solventogenesis represents one aspect of a survi-
val strategy in response to external pH [1,10]. Concerning
this aspect it is noteworthy that in contrast to many other
organisms, clostridial bacteria seem to be unable to main-
tain the internal pH value at a more or less constant level.
Instead they generate an approximately constant pH gradi-
ent across the cell membrane which results in an internal
pH value of about one unit higher than the external one
[12]. Consequently, the internal pH follows the external
one without significant delay [12].

While many research groups work with C. acetobutyli-
cum in batch culture, we focus on continuous culture
experiments in order to investigate the effect of pH on
the AB metabolism [16]. The ‘forward’ dynamic-shift
experiment runs in the following way: after approxi-
mately 65 hours (requiring five volume changes, each
after 13.3 hours) the culture is in steady state in the acid
producing phase. This status can be kept for up to ten
days. After this period the mega plasmid pSo/I which is
essential for solvent production will be lost and, with it,
the ability to produce solvents [18]. To initiate the meta-
bolic shift, control of the pH of the culture via KOH is
turned off. After approximately 65 hours the bacterial
population is in solventogenic steady state and can, in
principle, be held permanently in this state.

In this study we introduce a model at the metabolic,
proteomic, and genomic levels to explain the pH-
induced changes in AB metabolism and to elucidate the
key genes governing this shift. We perform steady-state
analyses of solventogenesis to study the effect on meta-
bolic outputs of artificially altering gene regulation with
the aim of predicting targets for optimal genetically
engineered production strains with respect to butanol.
The model is parameterized using data from our
dynamic-shift experiments. Our findings indicate that
mutations to, or otherwise altered expression of, single
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genes in the solvent-producing pathway are insufficient
to increase significantly the butanol fermentation; a
more complicated approach involving alterations in the
expression of multiple genes is required.

A further important aspect of the AB fermentation is
the flow of energetic and electron carriers and their avail-
ability which was investigated in the 1980 s and 1990 s by
several experimental groups [19,20]. The results suggest
that ATP and NADH levels might be important for the
regulation of AB fermentation. Nevertheless, for this first
dynamic model presented in this manuscript we do not
consider this aspect in order to simplify the investigations
of the pH-induced metabolic switch and its optimization
with respect to butanol production.

Methods
Experimental setup in continuous culture
In contrast to many other groups handling batch cul-
tures of C. acetobutylicum, we used continuous cultures
in order to study the effect of pH on solvent production,
in particular on the production of butanol. A fermenta-
tion process that can be operated continuously has sev-
eral advantages over a batch process in industrial and
biotechnological manufacturing: only one series of pre-
cultures is needed for a long production period, the
“dead season” necessary for the filling, sterilization, cool-
ing and clearing of the equipment is largely diminished
and the volume of the fermenter vessel can be reduced
without a loss of production capacity [17]. Stable solvent
production can be maintained for much longer in a syn-
thetic medium under phosphate limitation in a chemo-
stat culture than in the traditional batch process [21].
Our model is based around continuous culture
dynamic shift experiments. Experiments were performed
according to a standardized experimental setup [16,18]
and using standard operating procedures for extracting
and handling different types of samples. The strain
C. acetobutylicum ATCC824 was grown under anaerobic
conditions at 37°C and the precultures were prepared as
previously described [18]. The phosphate-limited chemo-
stat experiments were performed in a BiostatB 1.5-1 fer-
menter system (BBI, Melsungen, Germany) with 0.5 mM
KH,PO, and 4% (wt/vol) glucose in the supplying med-
ium [22] and a dilution rate of D = 0.075 4. The exter-
nal pH in the culture medium was adjusted to and kept
constant at pH 5.7 and pH 4.5 by automatic addition of 2
M KOH. The analysis of the fermentation products was
accomplished as described previously [18]. Three indivi-
dual experiments were performed shifting the culture
from pH 5.7 to pH 4.5 (which we call the ‘forward shift’
experiments) and one from pH 4.5 to pH 5.7 (the ‘reverse
shift’ experiment). Data were taken over the full length of
the observation time. The biological data is given in
Additional file 1: Tables S1 - S4.
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pH-dependent modeling of the AB fermentation

As mentioned before, the metabolism of AB fermentation
in C. acetobutylicum displays two characteristic meta-
bolic phases, acidogenesis and solventogenesis. A detailed
representation of the corresponding metabolic pathways
has been published by Jones and Woods [10]. Up to the
present, only a few metabolic models describing this fer-
mentative process have been published. Papoutsakis [23]
developed a stoichiometric model that could be used to
estimate the rates of reactions occurring within the AB
fermentation pathways of several (AB-producing) clostri-
dial bacteria in batch culture. Importantly, however,
these results are not transferable to continuous cultiva-
tions like the chemostat cultures used in this study where
the cells are growing exponentially throughout. Votruba
et al. [24] formulated a model of the fermentation pro-
cess for batch cultures without including the intermedi-
ate metabolites, restricting the variables to biomass,
glucose and the end products and this model captures
well the two phases. Metabolic flux analysis has been
applied since to the pathway [25-27]. Existing kinetic
models describing the dynamics of ABE fermentation do
not seek to capture the effect of pH upon the metabolic
network: in Shinto et al. [28] (which actually considers
Clostridium saccharoperbutylacetonicum) the switch is
assumed to be glucose-dependent and enzyme levels are
taken to be constant, while in Li et al. [29] enzyme activ-
ity is incorporated, but regulation is fed in directly to the
model from experimental data (rather than being allowed
to vary freely within the model or be influenced by other
model components). To our knowledge, therefore, the
model presented here is the first to consider the effect of
pH upon the metabolic network.

The reduced metabolic network

Here we present a model of the AB fermentation in
C. acetobutylicum in continuous culture. Because there
is a lack of published information on the kinetic para-
meters governing these reactions under the conditions
used in our experimental work in the literature, we
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aggregate a number of reactions of the metabolic net-
work published by Jones and Woods [10]. This enables
us to minimize the number of parameters that need to
be estimated from the experimental work by focusing
the model upon those reactions which are most likely to
be regulated by the pH of the environment. Thus, as
shown in Figure 1, five glycolytic steps were combined
into one reaction (R;), adopting the assumption that
there is a constant flux from glucose to acetyl-CoA.
Additionally, we reduce the number of steps in five
other reactions: the conversions of acetyl-CoA into two
molecules of acetate (R,), of butyryl-CoA into two of
butanol (R;y), of butyryl-CoA into two of butyrate (Rg),
and of acetyl-CoA into two of ethanol (Rs), we reduce
two steps into one. Finally, we represent the three steps
in the conversion of acetoacetyl-CoA to butyryl-CoA by
one (Ry). All intermediate reactions are listed in Table 1.

When gene regulation is not included explicitly in the
representation of a reaction, we employ Michaelis-Men-
ten expressions. In the following section we explain our
approach when gene regulation is included explicitly.
Incorporating gene regulation
The reactions required for solventogenesis are tightly
regulated at the genetic level: production of the enzymes
required to catalyze these reactions can be switched on
or off (or, more generally, increased or decreased) at the
transcriptional level by regulatory proteins binding at
the appropriate DNA sites. The levels of the specific
regulatory proteins are adjusted in response to both
internal and external signals (for example pH) that are
transmitted through the cell. It is therefore expected
that the switch from acidogenesis to solventogenesis (or,
indeed, vice versa), can be explained, at least partially,
via pH-regulation of the enzyme-associated genes.

The principal enzymes involved in solventogenesis are
encoded by the genes adc, adhE, bdhA/B, ctfA/B and
thlA - see Table 1. We note that there are two adhE
genes in C. acetobutylicum; the one we incorporate into
our model is sometimes referred to as adhEl. For

Table 1 Reactions that form the metabolic pathways of acidogenesis and solventogenesis and the enzymes which are
required to catalyze the solvent-associated reactions, i.e. 3-7 and 9

Reaction number Reaction

Associated enzyme(s)

glucose — acetyl-CoA
acetyl-CoA — acetate

acetyl-CoA — acetoacetyl-CoA
acetyl-CoA — ethanol

acetoacetate — acetone
butyryl-CoA — butyrate
butyryl-CoA — butanol

— O 0 N O U b W N =

0 acetoacetyl-CoA — butyryl-CoA

acetate + acetoacetyl-CoA — acetoacetate + acetyl-CoA

butyrate + acetoacetyl-CoA — acetoacetate + butyryl-CoA

CtfA/B
ThiA
AdhE
CtfA/B
Adc

AdhE, BdhA/B
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reasons outlined below, we include the influence of only
three of these genes in our dynamic model, namely adc,
adhE and ctfA/B.

Expression of the ctfA/B gene results in the acetoace-
tyl-CoA: acetate/butyrate:CoA-transferase [8] (or simply
CoA-transferase), which is the enzyme responsible for
converting acetoacetyl-CoA and the previously secreted
acetate or butyrate into acetoacetate and acetyl-CoA or
butyryl-CoA, respectively. The adhE gene is part of the
same operon as cifA/B, namely the sol operon [30]. The
dehydrogenase AdhE catalyzes the conversion of
butyryl-CoA and acetyl-CoA into butanol and ethanol,
respectively [31,32].

The adc gene encodes acetoacetate decarboxylase
(Adc), which is the enzyme responsible for the decarbox-
ylation of acetoacetate into acetone and CO, [14,15].
There are two known bdh genes: bdhA and bdhB; the
products of both genes are butanol dehydrogenases [33]
which (in addition to AdhE) convert butyryl-CoA into
butanol. Since their roles are similar to that of AdhE
their effects can be absorbed into the parameter choice
for AdhE. Thus, we neglected them from our dynamic
model. The gene product of thl/A is a thiolase which cata-
lyzes the conversion of acetyl-CoA into acetoacetyl-CoA
and is therefore needed for both acidogenesis and solven-
togenesis [34]. It is speculated that expression of the thiA
gene is constitutive [35] and recent experiments indicate
that the difference in transcription levels of thl/A between
acidogenesis and solventogenesis is much less marked
than that of ctfA/B, adc, and adhE [36]. Therefore, ThlA
was also neglected from our dynamic model as we
assume ThlA levels remain relatively constant through-
out the experiments as found in [16]. The adc, adhE and
ctfA/B genes are regulated in accordance with the meta-
bolic phase, with their transcription increasing in the sol-
ventogenic phase [36]. Thus, they are likely to be induced
via a pH-related signal and we therefore incorporate each
of these genes into the model. We assume that they are
each transcribed at two distinct rates: basal (rg for
enzyme E, see the dashed downward arrow in (1) below)
when the pH is sufficiently high (indeed, low levels of
these transcripts exist before the onset of solventogenesis,

see for example [37,38]) and at a higher rate (r}, see

dashed upward arrow in (1)) when the pH of the environ-
ment is low.
We assume that all enzymatic reactions are governed by

a
S+E==c* piE 1)
~
+al

Page 5 of 13

where S is the substrate, E the enzyme, C the complex
formed by S and E, and P the resulting product. As in
the derivation of Michaelis-Menten dynamics, we
assume that the concentration of C is in a quasi-steady
state [13,39] but, in contrast, we do not take E to be
constant because its production is regulated by pH [13].
Thus where we wish to include enzyme concentration
explicitly, we use conventional kinetic theory to obtain
the following equations [40]:

ds

— =-a-S-E, 2a
de * (2a)
£=a-S~E, (2b)
de

=rg+15 - F(p), (2)
c=ki‘s'E, (2d)

where o = ki-ky/(k1 + ky), though the equations invol-
ving CtfA/B require the product of three variables in
equations (2a) and (2b) since the reactions it catalyzes
involve two substrates. The production of the enzyme is
determined by the expression rate of the corresponding
gene; as the mechanisms by which solventogenesis is
induced have not been fully elucidated, we include a
generic pH-dependent switch F(p) which turns on
increased enzyme production below some threshold pH.
The switch takes the form of the smoothed step func-
tion,

F=1—tanh(n[p—p*]), 3)

where p* represents the threshold pH level around
which the switch occurs and # dictates the steepness of
the smooth switch function.

Since pH was set and controlled externally in the
dynamic shift experiments, we do not introduce a differ-
ential equation for this variable. For each experiment
pH is measured at regular time points. We fit a function
(using ‘nlinfit’ in Matlab [41]) of the form

p=57-c, -tanh(c, c3)+c, -tanh(—cs[t—c,]),

to the pH data, where ¢;, ¢; and c3 are constants, to
gain a distinct function representing pH for each simu-
lation; this function is then fed into the model via the
switch function F(p).
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Combining the pH-dependent metabolic network with gene
regulation

Where enzyme concentrations are to be included expli-
citly the reactions take the form outlined in the above
section; otherwise Michaelis-Menten kinetics are
adopted. The reactions displayed in Figure 1 and Table
1 are therefore represented by:

RIZM’ RGZQG'B'AQC'Cf,
K +G
Rzzﬂr R, =a,-Aa- Ad,
K, +AC
V, - BC
Ry=a3-A-AaC-Cf,  Rg=———,
3=03 f 57X, + BC (4)
R4:&, Ry = oy - BC - Ah,
2(K, +AC)
Ry=as-AC-Ah, Ry = 20 A4C
Ko + AaC

where the limiting rate of reaction i is given by
Vnax = ¥, and the corresponding dissociation constant
is K. We include the stoichiometric constant of two in
R; since two molecules of acetyl-CoA are formed from
one of glucose. Similarly, the constant 0.5 in R, repre-
sents the formation of one acetoacetyl-CoA from two
acetyl-CoA. The resulting metabolic model is given by:

%:Rl—R2+R3—R4—R5—D-AC,
t
dA
L _R,-R,-D-A,
dt 2 3
@:RS—D.E’«I,
de
dAaC g R, =Ry =Ry -D- Adc,
dt
da 4R ~R,—D- Aq, 5)
dt
4BC Ry ~Rg+Rs—Ry—D-BC,
de
dB
£ _Ry-R,-D"B,
dt 8 6
@=R7—D-An,
de
Bn _ Ry -D-Bn,
dt

where we have added to each equation an out-flow
term which is the product of the dilution rate with the
concentration of the corresponding metabolite because
we have a constant out-flow of both extracellular and
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intracellular (as a result of cell out-flow) products
through the chemostat.

In addition we require the following equations to
represent enzyme concentrations:

ﬁerd'Fer'F—D'Ad,

dt

d¢;

d—tf‘:TCf+Tgf'F—D'Cf, (6)
%:TA;I‘FTX;!'F—D'A”L

We fit the model to experimental data as described in
the following section.

Data normalization, parameter estimation and model
simulation

All parameters are estimated from three ‘forward’
experiments using the SBToolbox in Matlab [42]. As
mentioned before, GC data from the dynamic shift
experiments are used, measuring the time until the
medium reaches a certain pH level. The time span of
the whole switch differed between experiments, varying
from 22 (forward’ experiment 1, see Figure 2(a)) to 33.5
hours (‘forward’ experiment 2, see Figure 2(b)); see Sup-
plementary File 1 for the raw data. Thus, in order to
take an average of the data to be used for parameter
estimation, the data had to be normalized across the
dynamic shift interval to make comparisons between
time points meaningful (i.e. time points for each data
set should correspond to equivalent phases, namely
acidogenesis, the dynamic shift, or solventogenesis). To
achieve this, data sets 1 and 3 were normalized onto
data set 2, i.e. the time points occurring during the
dynamic shift were scaled so that the dynamic shift
phase lasts 33.5 hours in all normalized data sets; sol-
ventogenesis phase time points were translated so that
the start of solventogenesis occurs 33.5 hours after the
start of the dynamic shift phase for all normalized data
sets. Each data set was interpolated at identical time
points, enabling the average of the three scaled sets to
be calculated for parameter estimation, the results of
which are displayed in Table 2. In all comparisons
between the data and numerical solutions, the original
and unscaled data sets are used.

Steady-state analysis of the metabolic network

For the purposes of developing genetic engineering stra-
tegies for enhancing butanol yield, we wish to examine
changes to the steady states of the metabolic network in
response to variations in transcription rates of the sol-
vent-associated genes. Having neglected th/A, bdhA and
bdhB from the model for studying the time-dependent
dynamics in order to minimize the number of
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Figure 2 Comparison of our model (solid lines) with the data of the dynamic shift chemostat experiments (dots). Figure 2(a) shows
results for the forward’ dynamic shift experiment. The two repetitions of this forward” dynamic shift experiment are shown in Figure 2(b) and
Figure 2(c). The cells produce mainly acetate and butyrate when grown at a pH value of 5.7. During the transition phase C. acetobutylicum
switches its metabolism (as a function of the external pH) towards the generation of the solvents acetone and butanol at a pH of 4.5. Ethanol is
produced during acidogenesis and solventogenesis at approximately the same levels. In Figure 2(d) we demonstrate the comparison of the
model and the data for the ‘reverse’ dynamic shift experiment.

parameters to be estimated for the wild-type model, we
introduce them to the steady-state studies because it is
possible that overexpression or underexpression of these
genes will have an effect upon the fermentation product
yield. Thus, in order to explicitly vary expression of
these genes, we need to derive alternative representa-
tions for the reactions in which their gene products are
involved, i.e. we require parameters to represent produc-
tion from each of these genes. At steady state, the con-
centrations of ThlA and BhdA/B are given by rz/A and
rg/A, where rr and rp are the aforementioned produc-
tion rates, the latter representing the combined levels of
BdhA and BdhB (both play equivalent roles and so it is
sufficient to look at them in combination). Then the
rates R, and Ry become

(72)

ay (ran +15) BC
A

(7b)

Ry =

We note, however, that equation (7a) is required only
when the production rate of ThlA is varied (i.e. in
Figure 3(f)); in all other simulations R, is given by the
Michaelis-Menten expression in equation (4).

For simplicity, we assume that the rates of binding of
butyryl-CoA with BdhA and BdhB are the same (meaning
that we can consider the combined level of Bdh proteins)
and that this rate is the same as that between butyryl-CoA
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Table 2 Estimated parameter values

Parameter Units Value
V, b 494
Vv, h' 292
V, h! 456
Vg h'! 64.8
V1o h! 475
Ky mMm 000158
K, mM 000181
IC4 mM 187
Ky mMm 7.92e-006
Ko mM 1.40e-005
o mM? h’ 000517
os mM ! h! 0.0140
o mM? h! 0.00537
o mM™ h 4790
oo mM™ h 347000
Fag mM h' 0.00547

Ier mM h! 0.000324
ah mM h 0.289
rt mM h’! 0.104
/é;’f mM b 106
T mM h! 2.56

n pH ! 485
p* pH 4.50
D h' 0.075

and AdhE. We also do not include a rate of binding
between acetyl-CoA and ThlA. These assumptions do not
reduce the generality of the steady-state results as only the
ratios of binding and production to dilution appear and no
such constraints are imposed on the values of these ratios.
Since we are not concerned in this section with the time-
dependent behavior of the system (butanol fermentation
on a large scale would presumably be carried out in a con-
tinuous culture with the system therefore at steady state),

we associate a single production rate, FE , with each sol-

vent-associated enzyme; this rate is different for each
enzyme and is the sum of the basal production rate (r¢ for
enzyme E), occurring regardless of pH, and the faster low-

pH-induced production rate (1) occurring during sol-

ventogenesis, i.e. 7 =1, + rg . In Table 3, we display the

values of these combined enzyme production rates which
correspond to those used for the wild-type-associated
dynamic model.

Results and Discussion

Modeling and Simulation of the dynamic shift
experiments

Here we apply our dynamic process-oriented model of
AB fermentation by C. acetobutylicum that combines
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Figure 3 Steady-state curves of butanol (Bn) for varying
production of (a) Adc (acetoacetate decarboxylase), (b) and (c)
the CtfA/B (CoA-transferase), (d) AdhE (alcohol aldehyde
dehydrogenase), (e) BdhA and/or BdhB (butanol
dehydrogenases) and (f) ThIA (thiolase). In (c) we have altered
the axes of (b) in order to be able to see clearly the effect of
downregulation of ctfA/B.

the metabolic network with the regulation of pH-
induced proteome concentration (see Methods: pH-
dependent Modeling of AB Fermentation), the pH value
being the key factor for the metabolic changes in C.
acetobutylicum. We fitted the model to experimental
data of the dynamic shift experiments through the use
of a switch function F(p) (see Equation (3)) to demon-
strate the influence of the pH upon the fermentation
products: acetate and butyrate are produced at a high
pH value and acetone, butanol, and ethanol at a low pH
value. The resulting numerical simulations provide a
good fit to the data, see Figure 2. Thus, our model is
able to explain the metabolic shift of C. acetobutylicum
in continuous culture.

For the benefit of the reader, the SBML implementa-
tions of the model for each of the four experiments
have been included as additional files. The first ‘forward
shift’ experiment is encoded in Additional file 2, the

Table 3 Wild-type-associated production rates (to three
significant figures) for each enzyme in the steady-state
investigations

Parameter Wild-type-associated value
Tad 0109
Ter 106
Tan 2.85
rr 0
rs 0

We note that rr is required only when investigating the effect of varying the
production rate of ThIA.
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second ‘forward shift’ experiment in Additional file 3,
and the third ‘forward shift’ experiment in Additional
File 4. Finally, the ‘reverse shift’ experiment is provided
in Additional file 5.

The model is able to describe four independent
experiments: three ‘forward shift’ experiments (Figure 2
(a) - Figure 2(c)) and one ‘reverse shift’ experiment
(Figure 2(d)). In the ‘forward’ experiments the culture
was shifted from pH 5.7 to 4.5. In the first of these
(‘Forward’ 1, Figure 2(a)), acidogenesis at pH 5.7 was
maintained for 137 hours, after which the pH control
was stopped, allowing the natural metabolic shift to the
production of the solvents to begin. In this case, the
shift took 22 hours, meaning that 159 hours after the
start of the experiment, the cultures reached a pH of
4.5, where solventogenesis occured. The final measure-
ment was taken at 215 hours. At this point, however,
the continuous culture had not yet reached the steady
state of this phase (in general C. acetobutylicum needs
five complete volume changes to be in a stable state
which would be after approximately 224 hours).
Consequently, two repetitions of this experiment were
performed, ensuring that both of these attained the
steady state in each phase. In the first repetition of the
‘forward’ experiment ('Forward’ 2, Figure 2(b)), the pH
control was switched off after 137.5 hours, the system
needed around 33.5 hours for the shift before reaching
the solvent producing phase after 171 hours. Figure 2(b)
illustrates that steady state was reached after roughly
236 hours. In the second repetition ('Forward” 3, Figure
2(c)), following 121 hours in acidogenesis, the shift
lasted approximately 29 hours. From Figure 2(d), we see
that the solventogenic steady state was reached after
around 215 hours. In the ‘reverse’ experiment (Figure 2
(d)) the culture was shifted from pH 4.5 to 5.7. In this
case the pH control was switched off after the culture
was kept for 129 hours in the solvent producing phase.
The metabolic shift took around 17 hours before reach-
ing the acid producing phase.

In each case the two distinct pH-dependent phases are
evident: at pH 5.7 the main fermentation products are
always the acids acetate and butyrate, while at pH 4.5
these are acetone and butanol. Due to its position in the
pathway, ethanol is produced at low levels in both
phases.

For the variables which are measured experimentally,
initial conditions for each simulation are the corre-
sponding first data points, and zero for all other vari-
ables. Importantly, only the ‘forward” data were used to
estimate parameters: no further fitting was undertaken
to replicate the ‘reverse’ experiment in Figure 2(d). In all
instances, the model describes well the experimental
behavior. There are two principal discrepancies between
the simulations and the data. Firstly, the model does not
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capture the rise in butyrate concentration which occurs
during acidogenesis. It is possible that this is caused by
our choice of initial conditions for the variables which
are not measured experimentally (i.e. all the intermedi-
ate metabolites) since these will undoubtedly affect the
dynamics of the system before reaching steady state (we
will see in the subsequent section that the system is
monostable meaning that the steady states in either
phase will be achieved regardless of initial conditions).
Secondly, rather than maintaining a relatively constant
level of ethanol throughout the time course, the simula-
tion demonstrates a switch in the amount of this meta-
bolite being produced, the model attaining higher
ethanol levels during the solventogenic phase (though
the relative errors between the simulations and the data
for ethanol concentration are comparable to those of
the other end-products and, indeed, smaller than those
of the other solvents). This second discrepancy may be
more complex since the disagreement between the
simulation and the data concerns the steady-state level
in acid phase, rather than the dynamics. We focused on
AdhE1, the major enzyme for butanol production, and
did not consider AdhE2 in the model. However, recent
experiments have shown that the transcript of the
adhE2 gene is significantly upregulated during acidogen-
esis and antagonistically regulated with adhE1 [36].
Thus, it might be that this enzyme is responsible for
ethanol production at higher pH values.

Our model suggests that a simultaneous change in
regulation of the genes adc, ctfA/B, adhE is sufficient to
induce the change in phenotype involving the switch
between acidogenesis and solventogenesis in either
direction since these are the only genes included expli-
citly in the model given by (5) which matches well the
experimental data in Figure 2. Thus the model has
helped in the characterization of the metabolic shift by
identifying key genes involved in the process.

A systems biology study of genetic engineering of the
metabolic network: steady-state analysis of butanol yield
In order to investigate means of enhancing butanol
yield, we use the previous model to study the effects of
altered expression levels of the genes associated with
solventogenesis, i.e. adc, ctfA/B, adhE, bdhA/B and thlA,

on the steady-state butanol concentration ( B; ). A num-

ber of recent experimental studies investigate the effects
of altering gene regulation on product yields [43-46],
but all of these consider C. acetobutylicum in batch cul-
ture, rather than continuous culture, meaning that para-
meters and product concentrations are not directly
transferable between the two experimental setups. For
instance, reaction rates can be dependent upon, amongst
other things, pH, and, unlike in our experiments, the pH
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of a batch culture is continuously evolving (in our work
pH is constant in each phase). Thus, though we will
make comparisons between the qualitative results of the
experimental studies and our theoretical work, it must
be remembered that there are fundamental differences
between the two.

In order to investigate the consequence of altering
gene expression, we examine the dependence of the
steady states of the system on the enzyme production
rates. We display the results for butanol yield in Figure
3. The results for other metabolites can be found in
Additional file 1, Figures S1 - Sé6.

Firstly we consider fAd, the parameter controlling

production of the enzyme Adc. Adc is responsible for
the conversion of acetoacetate into acetone and the ana-
lysis shows that variation in Adc levels should have a
negligible effect upon butanol production, see Figure 3
(a). This is consistent with results of [45] which sug-
gested that, although required for acetone production,
downregulation of adc has no effect upon acetone yield.
These results, however, have been recently contradicted
in [46] where it was demonstrated that disruption of the
adc gene in a hyperbutanol-producing strain of C. aceto-
butylicum (EA2018) could, in fact, cause a decrease in
acetone production (again in batch culture). Neverthe-
less, the absolute amount of butanol was not signifi-
cantly changed, but consequently the ratio between
butanol and acetone yield was altered. The strain varia-
tion could at least partially account for the differences
in the qualitative results, in addition to a different gene
manipulation technique being used (TargeTron [47],
rather than antisense RNA). However, for our model to
reproduce such behavior we would need to include the
reverse of the CoA-transferase-mediated reaction so that
the build-up of acetoacetate caused by downregulation
of adc could be consumed in the production of end-
products other than acetone. To our knowledge, the
activity of the reverse reaction has not been shown to
be significant (and this is why it is excluded from our
model) but the results of [46] are a hint that this reverse
reaction may indeed arise in certain circumstances.
There are also many more factors which should be
taken into account such as the evolving pH in batch cul-
ture (and the dependence of the parameters in the
model upon this pH), the effect of the genetic altera-
tions on growth rate (the disruption in the adc gene
caused a significant inhibition on growth of the EA2018
cells) and the effect on redox balance.

The CoA-transferase (CtfA/B) synthesizes the conver-
sion of acetate and acetoacetyl-CoA into acetoacetate,
acetyl-CoA and butyryl-CoA, i.e. CtfA/B regulates the
conversion of acids into solvent precursors (acetoacetate
for acetone, acetyl-CoA for ethanol and butyryl-CoA for
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butanol). Increasing ¢y causes an increase in the pro-

duction of acetone and ethanol, while changes in buta-
nol production are negligible, see Figure 3(b). In [45],
the authors investigated downregulating c#fA/B (again in
batch culture) with the expectation that this should
lower acetone production and possibly therefore give
rise to increased levels of butanol. However, it was
found that downregulation of ctfA/B lowered levels of
both acetone and butanol and this is consistent with our
results, see Figure 3(c). It is speculated in [45] that the
reduced butanol levels could be as a result of the anti-
sense RNA causing unintended downregulation of adhE.
While this is, indeed, a valid explanation, our model
suggests that, at least in continuous culture, downregu-
lation of ctfA/B alone could lower butanol levels because
less butyryl-CoA is available from which butanol can be
formed (see Additional file 1: Figure S2).

AdhE is required for two solvent-producing reactions,
the conversion of acetyl-CoA into ethanol and of
butyryl-CoA into butanol. We would therefore expect

that increasing 74, (the rate of AdhE production)

would increase both ethanol and butanol output. How-
ever, Figure 3(d) illustrates that this is not necessarily

the case. While increasing 7,;, correlates with increased

levels of ethanol, butanol levels are initially raised (coin-
ciding with a decrease in acids) before plateauing over a

range of 7,, around the value seen experimentally in
the wild-type strain (the wild-type associated value of
T4p lies just to the left of the plateau). In this region of

T4, we observe a sharp rise in acetate production and a

smaller one in butyrate. If 7,, is increased further,

butanol levels decrease along with both acids (though
the acetate levels remain high). To our knowledge, no
experimental studies have been published considering
the effect on product yield of adhE in isolation but the
batch experiments reported in [44,48] examine simulta-
neous suppression of ctfA/B and overexpression of
adhE. In this case, overexpression of adhE causes an
increase in all solvents (though butanol levels are not
increased above wild-type levels: the adhE overexpres-
sion compensates for ctfA/B downregulation). This is

consistent with the lower range of 7,, discussed above.

The dual role of AdhE in solvent production obstructs
the possibility of exploiting overexpression of adhE to
increase butanol yield.

Thus we turn to BdhA and BdhB, which play a simi-
lar role to AdhE with respect to butanol production
alone, and not of ethanol. Figure 3(e) demonstrates the
effect of varying rg: butanol levels do increase with lar-
ger values of rp but the rate of increase decelerates
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with increasing rp, the levels saturating at a yield
slightly higher than that seen in the model under
default parameter values, i.e. those representing the
wild-type cells.

The last enzyme that we consider is ThlA, which is
required for the flow through the network downstream
of acetyl-CoA. Figure 3(f) illustrates the consequences of
varying this parameter. It is evident that, although a
thlA mutant should be deficient in butanol, overexpres-
sing thlA cannot push butanol yield significantly above
that observed in the wild-type strain; this is consistent
with experimental results in [43].

We are primarily concerned with genetic manipula-
tion to maximize butanol production, this solvent
being the most sought after for the manufacture of
biofuels. It would be logical to predict that overex-
pressing the genes responsible for producing the
enzymes involved in the solvent pathways of Figure 1
would increase butanol production. However, this is
only true to a limited extent. The most effective way
of achieving enhanced butanol yield is, according to
our model, via overexpression of the bdhA/B genes,
but the maximum levels of butanol attained via this
method are not markedly higher than those observed
in our wild-type experiments. Though a small increase
in adhE transcription will induce a higher butanol
yield (but, again, not much higher than that observed
in the wild-type), any further increase has a detrimen-
tal effect with the increased solvent production being
associated only with ethanol (shown in Additional file
1: Figure S4).

The model presented here, however, provides an effi-
cient and simple means by which more complex
approaches involving alteration to the expression of
multiple genes simultaneously can be investigated.
Such a theoretical approach should generate experi-
mentally-testable hypotheses; future publications will
address this.

Conclusions

The dependence of the metabolic phase of C. acetobuty-
licum on the pH of the environment is confirmed by
our experimental results: at low pH the dominant fer-
mentation products are solvents, with acids at high pH.
Incorporating gene regulation into the mathematical
model of the fermentation process furnishes a mechan-
istic representation of this pH-induced switch between
the two phases. Though the model captures well the
observed behavior, including additional regulation may
improve the fit. For instance, we have assumed, for sim-
plicity, that each solvent-associated gene is activated at
the same threshold pH value; assigning distinct thresh-
old values to each gene may improve the accuracy of
the model.
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Systems biology approaches involving alterations to
gene expression levels are frequently adopted to investi-
gate and exploit bacteria, for example in increasing the
yield of valuable fermentation products specific to the
bacterium of interest, which in the case of C. acetobuty-
licum is butanol. By incorporating gene regulation into
our model we are able to perform steady-state analyses
to make predictions upon the likely efficacy of potential
systems biology approaches. By varying gene expression
level in silico, we infer that, to increase butanol yield,
alterations in the expression of single solvent-associated
genes are insufficient; a more complex approach target-
ing two or more genes simultaneously is required.

Kinetic models such as that presented here are a
useful tool for examining gene regulation. However,
the number of parameters to be measured or esti-
mated can limit the optimal size of such a model
before the level of unknown information becomes too
great. Accordingly, components which could affect
the behavior of the model in certain circumstances
can be neglected in favor of reducing the number of
parameters. Genome-scale metabolic models such as
[26] and [27] can take into account the overall flux
through the whole cell, but they lack key regulatory
information. To gain full benefit from a systems biol-
ogy approach, both types of model should be used to
complement the other, e.g. the feasibility of useful
mutants predicted by kinetic modeling can be tested
by flux balance analysis in the genome-scale models
and these genome-scale models can be used to assess
the most important supplementary components to be
included in the kinetic model or to identify additional
sinks for existing variables. Thus, drawn together, the
two modeling approaches can be mutually beneficial.
The model presented in this work is therefore a
stepping stone from which a theoretical exploration
of gene manipulation in C. acetobutylicum can
be conducted to generate experimentally-testable
hypotheses.

Additional material

Additional file 1: The file provides experimental data for each shift
experiment and additional figures presenting steady-state curves
for variations in the expression of genes involved in the AB
fermentation pathway.

Additional file 2: This SBML file encodes the model of the pH-
induced metabolic shift in C. acetobutylicum for the first forward
shift experiment. Additionally, it is available at the JWS online model
database http:/jjjbiochem.sun.ac.za/.

Additional file 3: This SBML file encodes the model of the pH-
induced metabolic shift in C. acetobutylicum for the second forward
shift experiment. Additionally, it is available at the JWS online model
database http:/jjjbiochem.sun.ac.za/.

Additional file 4: This SBML file encodes the model of the pH-
induced metabolic shift in C. acetobutylicum for the third forward
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shift experiment. Additionally, it is available at the JWS online model
database http:/jjjbiochem.sun.acza/.

Additional file 5: This SBML file encodes the model of the pH-
induced metabolic shift in C. acetobutylicum for the reverse shift
experiment. Additionally, it is available at the JWS online model
database http:/jjjbiochem.sun.ac.za/.

List of abbreviations

A: Acetate; Aa: Acetoacetate; AaC: Acetoacetyl-CoA; AC: Acetyl-CoA; An:
Acetone; B: Butyrate; BC: Butyryl-CoA; Bn: Butanol; En: Ethanol; G: Glucose;
Ad: Acetoacetate decarboxylase (Adc); Ah: Aldehyde dehydrogenase (AdhE);
Cf: CoA transferase (CtfA/B); D: Dilution rate; : Limiting rate : Michaelis-
Menten constant.
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